通过天气,温度,风速3个特征,建立随机森林,判断特征的优先级
结果 天气 温度 风速
结果(0否,1是)
天气(0晴天,1阴天,2下雨)
温度(0热,1舒适,2冷)
风速(0没风,1微风,2大风)
1 1:0 2:1 3:0
结果去打球 1字段:晴天 2字段:温度舒适 3字段:风速没风
[hadoop@h201 pp]$ cat pp1.txt
1 1:0 2:1 3:0
0 1:2 2:2 3:2
1 1:0 2:0 3:0
1 1:0 2:0 3:1
1 1:0 2:1 3:1
1 1:0 2:1 3:1
1 1:0 2:1 3:0
0 1:1 2:2 3:2
0 1:1 2:2 3:2
0 1:2 2:2 3:2
0 1:2 2:1 3:1
0 1:2 2:1 3:2
0 1:1 2:2 3:2
1 1:0 2:1 3:0
本例子 用官方提供代码进行更改完成
hadoop fs -put pp1.txt /

scala> import org.apache.spark.mllib.tree.RandomForest
scala> import org.apache.spark.mllib.tree.model.RandomForestModel
scala> import org.apache.spark.mllib.util.MLUtils

val data = MLUtils.loadLibSVMFile(sc, "hdfs://h201:9000/pp1.txt")
//标记点是将密集向量或者稀疏向量与应答标签相关联(结果),在MLlib中,标记点用于监督学习算法。LIBSVM是林智仁教授等开发设计的一个简单、易用和快速有效的SVM模式识别与回归的软件包。MLlib已经提供了MLUtils.loadLibSVMFile方法读取存储在LIBSVM格式文本文件中的训练数据

//数据格式 :空格分割,第一部分为结果,后面为特征向量

scala> val splits = data.randomSplit(Array(0.7, 0.3))
scala> val (trainingData, testData) = (splits(0), splits(1))

scala> val numClasses = 2
//分类数
scala> val categoricalFeaturesInfo = Map[Int, Int]()
// categoricalFeaturesInfo 为空,意味着所有的特征为连续型变量
scala> val numTrees = 3
//树的个数
scala> val featureSubsetStrategy = "auto"
//特征子集采样策略,auto 表示算法自主选取
scala> val impurity = "gini"

//以性别举例:性别 :1-(1/2)^2-(1/2)^2 =0.5
scala> val maxDepth = 4
//树的最大层次
scala> val maxBins = 32
//特征最大装箱数

val model = RandomForest.trainClassifier(trainingData, numClasses, categoricalFeaturesInfo,
 numTrees, featureSubsetStrategy, impurity, maxDepth, maxBins)
//训练随机森林分类器

val labelAndPreds = testData.map { point =>
 val prediction = model.predict(point.features)
 (point.label, prediction)
}
scala> val testErr = labelAndPreds.filter(r => r._1 != r._2).count.toDouble / testData.count()
scala> println("Test Error = " + testErr)
// 测试数据评价训练好的分类器并计算错误率

scala> println("Learned classification forest model:\n" + model.toDebugString)

scala> model.save(sc, "myModelPath")
//持久化保存随机森林

scala> val sameModel = RandomForestModel.load(sc, "myModelPath")
//加载随机森林

spark 机器学习 随机森林 实现(二)的更多相关文章

  1. spark 机器学习 随机森林 原理(一)

    1.什么是随机森林顾名思义,是用随机的方式建立一个森林,森林里面有很多的决策树组成,随机森林的每一棵决 策树之间是没有关联的.在得到森林之后,当有一个新的输入样本进入的时候,就让森林中的每一棵决策树分 ...

  2. 使用基于Apache Spark的随机森林方法预测贷款风险

    使用基于Apache Spark的随机森林方法预测贷款风险   原文:Predicting Loan Credit Risk using Apache Spark Machine Learning R ...

  3. 机器学习实战基础(三十五):随机森林 (二)之 RandomForestClassifier 之重要参数

    RandomForestClassifier class sklearn.ensemble.RandomForestClassifier (n_estimators=’10’, criterion=’g ...

  4. Spark mllib 随机森林算法的简单应用(附代码)

    此前用自己实现的随机森林算法,应用在titanic生还者预测的数据集上.事实上,有很多开源的算法包供我们使用.无论是本地的机器学习算法包sklearn 还是分布式的spark mllib,都是非常不错 ...

  5. 机器学习——随机森林,RandomForestClassifier参数含义详解

    1.随机森林模型 clf = RandomForestClassifier(n_estimators=200, criterion='entropy', max_depth=4) rf_clf = c ...

  6. spark 机器学习 knn 代码实现(二)

    通过knn 算法规则,计算出s2表中的员工所属的类别原始数据:某公司工资表 s1(训练数据)格式:员工ID,员工类别,工作年限,月薪(K为单位)       101       a类       8年 ...

  7. 【Spark机器学习速成宝典】模型篇06随机森林【Random Forests】(Python版)

    目录 随机森林原理 随机森林代码(Spark Python) 随机森林原理 参考:http://www.cnblogs.com/itmorn/p/8269334.html 返回目录 随机森林代码(Sp ...

  8. Spark随机森林实现学习

    前言 最近阅读了spark mllib(版本:spark 1.3)中Random Forest的实现,发现在分布式的数据结构上实现迭代算法时,有些地方与单机环境不一样.单机上一些直观的操作(递归),在 ...

  9. 04-10 Bagging和随机森林

    目录 Bagging算法和随机森林 一.Bagging算法和随机森林学习目标 二.Bagging算法原理回顾 三.Bagging算法流程 3.1 输入 3.2 输出 3.3 流程 四.随机森林详解 4 ...

随机推荐

  1. [转]centos sqlite3安装及简单命令

    安装: 方法一: wget http://www.sqlite.org/sqlite-autoconf-3070500.tar.gz tar xvzf sqlite-autoconf-3070500. ...

  2. Linux_CentOS中Mongodb4.x 安装调试、远程管理、配置 mongodb 管理员密码

    Mongodb4.x 安装 官方文档:https://docs.mongodb.com/manual/tutorial/install-mongodb-on-red-hat/ 1.配置 yum 源 1 ...

  3. [LeetCode] 377. Combination Sum IV 组合之和 IV

    Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...

  4. [LeetCode] 639. Decode Ways II 解码方法 II

    A message containing letters from A-Z is being encoded to numbers using the following mapping way: ' ...

  5. Redis哨兵(Sentinel)模式

    Redis哨兵(Sentinel)模式   主从切换技术的方法是:当主服务器宕机后,需要手动把一台从服务器切换为主服务器,这就需要人工干预,费事费力,还会造成一段时间内服务不可用.这不是一种推荐的方式 ...

  6. .Net Core 2.0发布到 CentOS

    上一篇 在CentOS 7中 使用 Nginx 反代 .Net Core 中创建的项目是创建的默认项目,现在我们来将我们开发的项目发布到 CentOs 中,反代还是使用 Nginx 1.创建一个 .N ...

  7. consul异地多数据中心以及集群部署方案

    consul异地多数据中心以及集群部署方案目的实现consul 异地多数据中心环境部署,使得一个数据中心的服务可以从另一个数据中心的consul获取已注册的服务地址 环境准备两台 linux服务器,外 ...

  8. ProtoStuff无法反序列化Deprecated注解成员问题记录

    在开发过程中,遇到一个鬼畜的问题,在DO的某个成员上添加@Deprecated注解之后,通过ProtoStuff反序列化得到的DO中,这个成员一直为null:花了不少时间才定位这个问题,特此记录一下 ...

  9. springboot获取上下文ApplicationContext

    在springboot主程序里改成 public static void main(String[] args) { // SpringApplication.run(SpringbootAPP.cl ...

  10. 前端HTML学习心得

    学习最好的效果就是理论加实践--Hanks!!!(给大家打鸡血的哈哈哈) 前面的学习我教大家怎么搭建简单的前端开发环境,现在我教大家怎么使用工具学习(从入门到放弃哈哈,不不不,这是以前的我,现在我下了 ...