讲解Flume
4个demo看懂Flume
1、netcat数据展示到console
## 定义 sources、channels 以及 sinks
agent1.sources = netcatSrc
agent1.channels = me moryChannel
agent1.sinks = loggerSink ## netcatSrc 的配置
agent1.sources.netcatSrc.type = netcat
agent1.sources.netcatSrc.bind = localhost
agent1.sources.netcatSrc.port = 44445 ## loggerSink 的配置
agent1.sinks.loggerSink.type = logger ## memoryChannel 的配置
agent1.channels.memoryChannel.type = memory
agent1.channels.memoryChannel.capacity = 100 ## 通过 memoryChannel 连接 netcatSrc 和 loggerSink
agent1.sources.netcatSrc.channels = memoryChannel
agent1.sinks.loggerSink.channel = memoryChannel
2、netcat数据保存到HDFS,分别使用memory和file channal
## 定义 sources、channels 以及 sinks
agent1.sources = netcatSrc
agent1.channels = memoryChannel
agent1.sinks = hdfsSink ## netcatSrc 的配置
agent1.sources.netcatSrc.type = netcat
agent1.sources.netcatSrc.bind = localhost
agent1.sources.netcatSrc.port = 44445 ## hdfsSink 的配置
agent1.sinks.hdfsSink.type = hdfs
agent1.sinks.hdfsSink.hdfs.path = hdfs://master:9999/user/hadoop-twq/spark-course/steaming/flume/%y-%m-%d
agent1.sinks.hdfsSink.hdfs.batchSize = 5
agent1.sinks.hdfsSink.hdfs.useLocalTimeStamp = true ## memoryChannel 的配置
agent1.channels.memoryChannel.type = memory
agent1.channels.memoryChannel.capacity = 100 ## 通过 memoryChannel 连接 netcatSrc 和 hdfsSink
agent1.sources.netcatSrc.channels = memoryChannel
agent1.sinks.hdfsSink.channel = memoryChannel
3、日志文件数据保存到HDFS
## 定义 sources、channels 以及 sinks
agent1.sources = logSrc
agent1.channels = fileChannel
agent1.sinks = hdfsSink ## logSrc 的配置
agent1.sources.logSrc.type = exec
agent1.sources.logSrc.command = tail -F /home/hadoop-twq/spark-course/steaming/flume-course/demo3/logs/webserver.log ## hdfsSink 的配置
agent1.sinks.hdfsSink.type = hdfs
agent1.sinks.hdfsSink.hdfs.path = hdfs://master:9999/user/hadoop-twq/spark-course/steaming/flume/%y-%m-%d
agent1.sinks.hdfsSink.hdfs.batchSize = 5
agent1.sinks.hdfsSink.hdfs.useLocalTimeStamp = true ## fileChannel 的配置
agent1.channels.fileChannel.type = file
agent1.channels.fileChannel.checkpointDir = /home/hadoop-twq/spark-course/steaming/flume-course/demo2-2/checkpoint
agent1.channels.fileChannel.dataDirs = /home/hadoop-twq/spark-course/steaming/flume-course/demo2-2/data ## 通过 fileChannel 连接 logSrc 和 hdfsSink
agent1.sources.logSrc.channels = fileChannel
agent1.sinks.hdfsSink.channel = fileChannel

数据收集,从一个数据源经过channels,Sink到存储结构上,以event的方式发送
Spark Streaming 集成 Flume (push模式)
import org.apache.spark.SparkConf
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming._
import org.apache.spark.streaming.dstream.DStream
import org.apache.spark.streaming.flume._
import org.apache.spark.util.IntParam /**
* Produces a count of events received from Flume.
*
* This should be used in conjunction with an AvroSink in Flume. It will start
* an Avro server on at the request host:port address and listen for requests.
* Your Flume AvroSink should be pointed to this address.
*
* Flume-style Push-based Approach(Spark Streaming作为一个agent存在)
*
* 1、在slave1(必须要有spark的worker进程在)上启动一个flume agent
* bin/flume-ng agent -n agent1 -c conf -f conf/flume-conf.properties
*
* 2、启动Spark Streaming应用
spark-submit --class com.twq.streaming.flume.FlumeEventCountPushBased \
--master spark://master:7077 \
--deploy-mode client \
--driver-memory 512m \
--executor-memory 512m \
--total-executor-cores 4 \
--executor-cores 2 \
/home/hadoop-twq/spark-course/streaming/spark-streaming-datasource-1.0-SNAPSHOT-jar-with-dependencies.jar \
172.26.232.97 44446 3、在slave1上 telnet slave1 44445 发送消息
*/
object FlumeEventCountPushBased {
def main(args: Array[String]) {
if (args.length < 2) {
System.err.println(
"Usage: FlumeEventCount <host> <port>")
System.exit(1)
} val Array(host, port) = args val batchInterval = Milliseconds(2000) // Create the context and set the batch size
val sparkConf = new SparkConf().setAppName("FlumeEventCount")
val ssc = new StreamingContext(sparkConf, batchInterval) // Create a flume stream
val stream: DStream[SparkFlumeEvent] = FlumeUtils.createStream(ssc, host, port.toInt, StorageLevel.MEMORY_ONLY_SER_2) // Print out the count of events received from this server in each batch
stream.count().map(cnt => "Received " + cnt + " flume events." ).print() ssc.start()
ssc.awaitTermination()
}
}
import org.apache.spark.SparkConf
import org.apache.spark.streaming._
import org.apache.spark.streaming.flume._
import org.apache.spark.util.IntParam /**
* Produces a count of events received from Flume.
*
* This should be used in conjunction with the Spark Sink running in a Flume agent. See
* the Spark Streaming programming guide for more details.
*
* Pull-based Approach using a Custom Sink(Spark Streaming作为一个Sink存在)
*
* 1、将jar包scala-library_2.11.8.jar(这里一定要注意flume的classpath下是否还有其他版本的scala,要是有的话,则删掉,用这个,一般会有,因为flume依赖kafka,kafka依赖scala)、
* commons-lang3-3.5.jar、spark-streaming-flume-sink_2.11-2.2.0.jar
* 放置在master上的/home/hadoop-twq/spark-course/streaming/spark-streaming-flume/apache-flume-1.8.0-bin/lib下
*
* 2、配置/home/hadoop-twq/spark-course/streaming/spark-streaming-flume/apache-flume-1.8.0-bin/conf/flume-conf.properties
*
* 3、启动flume的agent
* bin/flume-ng agent -n agent1 -c conf -f conf/flume-conf.properties
*
* 4、启动Spark Streaming应用
spark-submit --class com.twq.streaming.flume.FlumeEventCountPullBased \
--master spark://master:7077 \
--deploy-mode client \
--driver-memory 512m \
--executor-memory 512m \
--total-executor-cores 4 \
--executor-cores 2 \
/home/hadoop-twq/spark-course/streaming/spark-streaming-datasource-1.0-SNAPSHOT-jar-with-dependencies.jar \
master 44446 3、在master上 telnet localhost 44445 发送消息 */
object FlumeEventCountPullBased {
def main(args: Array[String]) {
if (args.length < 2) {
System.err.println(
"Usage: FlumePollingEventCount <host> <port>")
System.exit(1)
} val Array(host, port) = args val batchInterval = Milliseconds(2000) // Create the context and set the batch size
val sparkConf = new SparkConf().setAppName("FlumePollingEventCount")
val ssc = new StreamingContext(sparkConf, batchInterval) // Create a flume stream that polls the Spark Sink running in a Flume agent
val stream = FlumeUtils.createPollingStream(ssc, host, port.toInt) // Print out the count of events received from this server in each batch
stream.count().map(cnt => "Received " + cnt + " flume events." ).print() ssc.start()
ssc.awaitTermination()
}
}
讲解Flume的更多相关文章
- 海量日志收集利器 —— Flume
Flume 是什么? Flume是一个分布式.可靠.和高可用的海量日志聚合的系统,支持在系统中定制各类数据发送方,用于收集数据:同时,Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的 ...
- (升级版)Spark从入门到精通(Scala编程、案例实战、高级特性、Spark内核源码剖析、Hadoop高端)
本课程主要讲解目前大数据领域最热门.最火爆.最有前景的技术——Spark.在本课程中,会从浅入深,基于大量案例实战,深度剖析和讲解Spark,并且会包含完全从企业真实复杂业务需求中抽取出的案例实战.课 ...
- flume http source示例讲解
一.介绍 flume自带的Http Source可以通过Http Post接收事件. 场景:对于有些应用程序环境,它可能不能部署Flume SDK及其依赖项,或客户端代码倾向于通过HTTP而不是Flu ...
- Flume1 初识Flume和虚拟机搭建Flume环境
前言: 工作中需要同步日志到hdfs,以前是找运维用rsync做同步,现在一般是用flume同步数据到hdfs.以前为了工作简单看个flume的一些东西,今天下午有时间自己利用虚拟机搭建了 ...
- 高可用Hadoop平台-Flume NG实战图解篇
1.概述 今天补充一篇关于Flume的博客,前面在讲解高可用的Hadoop平台的时候遗漏了这篇,本篇博客为大家讲述以下内容: Flume NG简述 单点Flume NG搭建.运行 高可用Flume N ...
- 用通俗易懂的大白话讲解Map/Reduce原理
Hadoop简介 Hadoop就是一个实现了Google云计算系统的开源系统,包括并行计算模型Map/Reduce,分布式文件系统HDFS,以及分布式数据库Hbase,同时Hadoop的相关项目也很丰 ...
- Flume协作框架
1.概述 ->flume的三大功能 collecting, aggregating, and moving 收集 聚合 移动 2.框图 3.架构特点 ->on streaming data ...
- Flume NG之Interceptor简介
转载地址:http://www.cnblogs.com/lxf20061900/p/3658172.html 有的时候希望通过Flume将读取的文件再细分存储,比如讲source的数据按照业务类型分开 ...
- 基于Flume的美团日志收集系统(一)架构和设计
美团的日志收集系统负责美团的所有业务日志的收集,并分别给Hadoop平台提供离线数据和Storm平台提供实时数据流.美团的日志收集系统基于Flume设计和搭建而成. <基于Flume的美团日志收 ...
随机推荐
- Idea Spring 、SpringBoot相关设置技巧
1.Spring变量依赖注入出现红色波浪线 Could not autowire. No beans of 'UserMapper' type found. less... (Ctrl+F1) Che ...
- 是真的随笔qvq
DATE:2019.11.20 今天考了试——对光荣爆零.从14:00考到18:30,隔壁计算机教室的电脑弄得心态炸裂了,各种卡,肝了一个下午的两道题以电脑死机没有代码结尾,考完才知道这是最好骗分的两 ...
- 实现一个 web 服务器
在 system1 上配置一个站点 http://system1.group8.example.com/,然后执行下述步骤: 1.从 http://server.group8.example.com/ ...
- Codeforces Round #580 (Div. 1) A-E
Contest Page A Tag:构造 将$a_i$看做一个无穷数列,$i > 2n$时$a_i = a_{i - 2n}$.设$sgn_i = \sum\limits_{j=i+1}^{i ...
- Mybatis中使用collection进行多对多双向关联示例(含XML版与注解版)
Mybatis中使用collection进行多对多双向关联示例(含XML版与注解版) XML版本: 实体类: @Data @NoArgsConstructor public class Course ...
- kali之使用sqlmap进行sql注入
sqlmap简介 sqlmap支持五种不同的注入模式: 1.基于布尔的盲注,即可以根据返回页面判断条件真假的注入. 2.基于时间的盲注,即不能根据页面返回内容判断任何信息,用条件语句查看时间延迟语句是 ...
- 【夯实基础】- Integer.valueof()和Integer.parseInt()的区别
今天在看公司代码的时候,看到有人在将 String 转为 int 时,用到了Integer.parseInt(String s)方法,我一直用的是Integer.valueOf(String s)方法 ...
- 英语juelrye宝石
juelrye 外语词汇,代指宝石珠宝稀有的物件 中文名珠宝装饰 外文名juelrye 目录 释义 juelrye Noun(名词) Uncountable(不可数) 1. juelrye des ...
- 红米手机使用应用沙盒一键修改sdk信息
前面文章介绍了怎么在安卓手机上安装激活XPOSED框架,XPOSED框架的极强的功能各位都介绍过,能不修改APK的前提下,修改系统内核的参数,打个比方在某些应用情景,各位需要修改手机的某个系统参数,这 ...
- 软工作业 wc-java
项目要求: 实现一个统计程序,它能正确统计程序文件中的字符数.单词数.行数,以及还具备其他扩展功能,并能够快速地处理多个文件. 具体功能 -c 返回文件字符数 -w 返回词的数目 -l 返回行数 扩展 ...