递归写法,好久不写很容易就gg了...

dp[i]=max(dp[j])+1,并且s[i]XORs[j]<=x 

01字典树优化一下转移。

 #include <bits/stdc++.h>

 #define ll long long
#define ull unsigned long long
#define st first
#define nd second
#define pii pair<int, int>
#define pil pair<int, ll>
#define pli pair<ll, int>
#define pll pair<ll, ll>
#define tiii tuple<int, int, int>
#define pw(x) ((1LL)<<(x))
#define lson l, m, rt<<1
#define rson m+1, r, rt<<1|1
#define FIN freopen("A.in","r",stdin);
#define FOUT freopen("A.out","w",stdout);
using namespace std;
/***********/
template <class T>
bool scan (T &ret) {
char c;
int sgn;
if (c = getchar(), c == EOF) return ; //EOF
while (c != '-' && (c < '' || c > '') ) c = getchar();
sgn = (c == '-') ? - : ;
ret = (c == '-') ? : (c - '');
while (c = getchar(), c >= '' && c <= '') ret = ret * + (c - '');
ret *= sgn;
return ;
}
template<typename N,typename PN>inline N flo(N a,PN b){return a>=?a/b:-((-a-)/b)-;}
template<typename N,typename PN>inline N cei(N a,PN b){return a>?(a-)/b+:-(-a/b);}
template<typename T>inline int sgn(T a) {return a>?:(a<?-:);}
template <class T1, class T2>
bool gmax(T1 &a, const T2 &b) { return a < b? a = b, :;}
template <class T1, class T2>
bool gmin(T1 &a, const T2 &b) { return a > b? a = b, :;}
template <class T> inline T lowbit(T x) {return x&(-x);} template<class T1, class T2>
ostream& operator <<(ostream &out, pair<T1, T2> p) {
return out << "(" << p.st << ", " << p.nd << ")";
}
template<class A, class B, class C>
ostream& operator <<(ostream &out, tuple<A, B, C> t) {
return out << "(" << get<>(t) << ", " << get<>(t) << ", " << get<>(t) << ")";
}
template<class T>
ostream& operator <<(ostream &out, vector<T> vec) {
out << "("; for(auto &x: vec) out << x << ", "; return out << ")";
}
void testTle(int &a){
while() a = a*(long long)a%;
}
const int inf = 0x3f3f3f3f;
const long long INF = 1e17;
const long long mod = ;
const double eps = 1e-;
const int N = 1e5+;
/***********/ int a[N], X;
struct Tire{
int tot, node[N][], val[N], dp[N];
int newnode(){
++tot;
node[tot][] = node[tot][] = val[tot] = ;
dp[tot] = -1e9;
return tot;
}
void init(){
tot = ;
newnode();
}
void pushup(int rt){
val[rt] = ;
dp[rt] = -1e9;
if(node[rt][]&&val[ node[rt][] ]) {
gmax(dp[rt], dp[ node[rt][] ]);
val[rt] += val[ node[rt][] ];
}
if(node[rt][]&&val[ node[rt][] ]) {
gmax(dp[rt], dp[ node[rt][] ]);
val[rt] += val[ node[rt][] ];
}
}
void update(int x, int d, int v, int now = , int dep = ){
if(dep == -){
val[now] += d;
if(val[now]) gmax(dp[now], v);
else dp[now] = -1e9;
return ;
}
int t = &(x>>dep);
if(!node[now][t]) node[now][t] = newnode();
update(x, d, v, node[now][t], dep-);
pushup(now);
}
int query(int x, int now = , int dep = ){
if(dep == -) return dp[now];
int t1 = &(X>>dep), t2 = &(x>>dep);
int ret = -1e9;
if(t1){
if(node[now][t2]) gmax(ret, dp[ node[now][t2] ]);
if(node[now][t2^]) gmax(ret, query(x, node[now][t2^], dep-));
}
else if(node[now][t2]) gmax(ret, query(x, node[now][t2], dep-));
return ret;
}
}T;
int f[N];
int main(){
int t; scanf("%d", &t);
while(t--){
int n, L, p, q, i;
scanf("%d%d%d", &n, &X, &L);
scanf("%d%d%d", a+, &p, &q);
for(i = ; i <= n; i++)
a[i] = (a[i-]*(ll)p+q)%268435456LL;
for(int i = ; i <= n; i++)
a[i] = a[i]^a[i-];
T.init();
T.update(a[], , f[]);
for(i = ; i <= n&&i <= L; i++){
f[i] = T.query(a[i])+;
T.update(a[i], , f[i]);
} for( ; i <= n; i++){
T.update(a[i-L-], -, f[i-L-]);
f[i] = T.query(a[i])+;
T.update(a[i], , f[i]);
}
printf("%d\n", max(f[n], ));
}
return ;
}

HDU5845 Best Division的更多相关文章

  1. 【题解】HDU5845 Best Division (trie树)

    [题解]HDU5845 Best Division (trie树) 题意:给定你一个序列(三个参数来根),然后请你划分子段.在每段子段长度小于等于\(L\)且子段的异或和\(\le x\)的情况下最大 ...

  2. python from __future__ import division

    1.在python2 中导入未来的支持的语言特征中division(精确除法),即from __future__ import division ,当我们在程序中没有导入该特征时,"/&qu ...

  3. [LeetCode] Evaluate Division 求除法表达式的值

    Equations are given in the format A / B = k, where A and B are variables represented as strings, and ...

  4. 关于分工的思考 (Thoughts on Division of Labor)

    Did you ever have the feeling that adding people doesn't help in software development? Did you ever ...

  5. POJ 3140 Contestants Division 树形DP

    Contestants Division   Description In the new ACM-ICPC Regional Contest, a special monitoring and su ...

  6. 暴力枚举 UVA 725 Division

    题目传送门 /* 暴力:对于每一个数都判断,是否数字全都使用过一遍 */ #include <cstdio> #include <iostream> #include < ...

  7. GDC2016【全境封锁(Tom Clancy's The Division)】对为何对应Eye Tracked System,以及各种优点的演讲报告

    GDC2016[全境封锁(Tom Clancy's The Division)]对为何对应Eye Tracked System,以及各种优点的演讲报告 原文 4Gamer編集部:松本隆一 http:/ ...

  8. Leetcode: Evaluate Division

    Equations are given in the format A / B = k, where A and B are variables represented as strings, and ...

  9. hdu 1034 (preprocess optimization, property of division to avoid if, decreasing order process) 分类: hdoj 2015-06-16 13:32 39人阅读 评论(0) 收藏

    IMO, version 1 better than version 2, version 2 better than version 3. make some preprocess to make ...

随机推荐

  1. jstl和jsp脚本变量相互访问

    1.jsp脚本访问jstl标准动作的变量,可以通过隐式的范围变量来获取,对于页面作用域的变量,可以通过pageContext.getAttribute()来获取,也可以通过动作来获取: <c:s ...

  2. python怎么装模块

    windows下 最简单的方法: File---Settings--Project  ---Project Interpreter 下----点击 +号,输入你需要安装的模块名,点击Install P ...

  3. YTU 2344: 先序遍历二叉树

    原文链接:https://www.dreamwings.cn/ytu2344/2603.html 2344: 先序遍历二叉树 时间限制: 1 Sec  内存限制: 128 MB 提交: 4  解决:  ...

  4. HDU 自动刷题机 Auto AC (轻轻松松进入HDU首页)

    前言: 在写这篇文章之前,首先感谢给我思路以及帮助过我的学长们 以下4篇博客都是学长原创,其中有很多有用的,值得学习的东西,希望能够帮到大家! 1.手把手教你用C++ 写ACM自动刷题神器(冲入HDU ...

  5. javaWEB国际化:DateFormat,NumberFormat,MessageFormat,ResourceBundle的使用

    DateFormat:格式化日期的工具类,本身是一个抽象类: NumberFormat:格式化 数字 到 数字字符串,或货币字符串的字符类; MessageFormat: 可以格式化模式字符串,模式字 ...

  6. Maya Calendar 分类: POJ 2015-06-11 21:44 12人阅读 评论(0) 收藏

    Maya Calendar Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 70016   Accepted: 21547 D ...

  7. U3D UGUI学习5 - Layout和文字适配

    Layout这部分UGUI算是比NGUI做的到位 之前遇到了一个问题,NGUI做文字和背景框适配和容易,绑定一下就好了.UGUI你得弄Layout才可以,而且还需要配置. 但这个Layout使用场合是 ...

  8. PostgreSql安装

    官网:http://www.postgresql.org/download/linux/redhat/ 一.安装 由于我的机子是centos6.2,所以选择RedHat的. 按照官网所说的进行安装: ...

  9. spring Aop中aop:advisor 与 aop:aspect的区别

    转载:http://blog.csdn.net/u011710466/article/details/52888277 在spring的配置中,会用到这两个标签.那么他们的区别是什么呢?       ...

  10. SQL Server中常用的SQL语句

    1.概述 名词 笛卡尔积.主键.外键 数据完整性 实体完整性:主属性不能为空值,例如选课表中学号和课程号不能为空 参照完整性:表中的外键取值为空或参照表中的主键 用户定义完整性:取值范围或非空限制,例 ...