CPP&MATLAB实现拉格朗日插值法
开始学习MATLAB(R和Python先放一放。。。),老师推荐一本书,看完基础就是各种算法。。。首先是各种插值。先说拉格朗日插值法,这原理楼主完全不懂的,查的维基百科,好久才看懂。那里讲的很详细,这里就不在赘述了。一般看这个范例,在回头看公式就比较容易理解。
关于MATLAB的实现,查了很多资料,下面的版本最好理解。
%lagran1.m
%求拉格朗日插值多项式和基函数
%输入的量:n+1个节点(x_i,y_i)(i = 1,2, ... , n+1)横坐标向量X,纵坐标向量Y
%输出的量:n次拉格朗日插值多项式L,基函数l
function [L,l] = lagran1(X,Y)
% m为已知插值点的个数
m = length(X);
for k = 1 : m
% 迭代相乘前的初始化
% V代表每个k下的拉格朗日基本多项式
V = 1;
for i = 1 : m
if k ~= i
% conv这里是用于多项式相乘
% poly(a) 当a为数时,返回多项式(x - a)
V = conv(V,poly(X(i))) / (X(k) - X(i));
end
end
%l将所有的拉格朗日多项式存为一列
%poly2sym就是转化为多项式,下文有简单的demo
l(k, :) = poly2sym(V);
end
% 得到最终的拉格朗日多项式
L = Y * l;
关于poly2sym,是将数组转化为多项式的函数,不指定符号,默认为x.
运行函数:
查看拉格朗日多项式:
运用此函数进行插值:
接下来,最近学了一点cpp,就想用用cpp实现一遍,查到了这篇博文。这里就直接贴上了。
#include<iostream>
#include<string>
#include<vector>
using namespace std;
/*
vector:不是一种数据类型。 vector<int>是一种数据类型。
vector容器是一个模板类,可以存放任何类型的对象(但必须是同一类对象)。
vector对象可以在运行时高效地添加元素,并且vector中元素是连续存储的。
*/ // 关于 & 的解释
/*
当我们声明一个变量的同时,它必须被存储到内存中一个具体的单元中。
通常我们并不会指定变量被存储到哪个具体的单元中—幸亏这通常是由编译器和操作系统自动完成的,
但一旦操作系统指定了一个地址,有些时候我们可能会想知道变量被存储在哪里了。
这可以通过在变量标识前面加与符号ampersand sign (&)来实现,它表示"...的地址" ("address of"),
因此称为地址操作符(adress operator),又称去引操作符(dereference operator)
*/ // 函数声明,是的其在完整定义前可以被(main函数)使用
double Lagrange(int N,vector<double>&X,vector<double>&Y,double x); int main()
{
char a='n';
do{
cout<<"请输入插值次数n的值:"<<endl;
int N;
cin>>N;
vector<double>X(N,0);
vector<double>Y(N,0);
cout<<"请输入插值点对应的值及其函数值(Xi,Yi):"<<endl;
for(int a=0;a<N;a++){
cin>>X[a]>>Y[a];
}
cout<<"请输入要求值的x的值:"<<endl;
double x;
cin>>x;
double result=Lagrange(N,X,Y,x);
cout<<"由拉格朗日插值法得出的结果:"<<result<<endl;
cout<<"是否要继续?<y/n>:";
cin>>a;
}while(a=='y');
return 0;
} //vector<double>,创建空容器,其对象类型为double类
double Lagrange(int N,vector<double>&X,vector<double>&Y,double x)
{
double result=0;
for(int i=0;i<N;i++){
double temp=Y[i];
for(int j=0;j<N;j++){
if(i != j){
temp = temp*(x-X[j]);
temp = temp/(X[i]-X[j]);
}
}// 与上文MATLAB实现不同,这里直接将拉格朗日多项式的各项直接相加
result += temp;
}
return result;
}
关于 & 的用法:
运行结果:
嗯,和上面MATLAB还是一样的,看来代码没问题咯。但是呢,从输出可以看到,这里一次拟合只能插一个值,那么如果同样的数据,我们想要插入两个点,这个代码就行不通了。其实改也很简单,只要挪一下do-while循环的位置就可以了。下面是改进的代码。
#include<iostream>
#include<string>
#include<vector>
using namespace std; // 函数声明,是的其在完整定义前可以被(main函数)使用
double Lagrange(int N,vector<double>&X,vector<double>&Y,double x); int main()
{
char a='n'; cout<<"请输入插值次数n的值:"<<endl;
int N;
cin>>N;
vector<double>X(N,0);
vector<double>Y(N,0);
cout<<"请输入插值点对应的值及其函数值(Xi,Yi):"<<endl;
for(int a=0;a<N;a++){
cin>>X[a]>>Y[a];}
// 注意do从上面移动到了这里,也就是改变了循环的内容
do{
cout<<"请输入要求值的x的值:"<<endl;
double x;
cin>>x;
double result=Lagrange(N,X,Y,x);
cout<<"由拉格朗日插值法得出的结果:"<<result<<endl;
cout<<"是否要继续?<y/n>:";
cin>>a;
}while(a=='y');
return 0;
} //vector<double>,创建空容器,其对象类型为double类
double Lagrange(int N,vector<double>&X,vector<double>&Y,double x)
{
double result=0;
for(int i=0;i<N;i++){
double temp=Y[i];
for(int j=0;j<N;j++){
if(i != j){
temp = temp*(x-X[j]);
temp = temp/(X[i]-X[j]);
}
}// 与上文MATLAB实现不同,这里直接将拉格朗日多项式的各项直接相加
result += temp;
}
return result;
}
运行结果:
CPP&MATLAB实现拉格朗日插值法的更多相关文章
- Matlab数值计算示例: 牛顿插值法、LU分解法、拉格朗日插值法、牛顿插值法
本文源于一次课题作业,部分自己写的,部分借用了网上的demo 牛顿迭代法(1) x=1:0.01:2; y=x.^3-x.^2+sin(x)-1; plot(x,y,'linewidth',2);gr ...
- 拉格朗日插值法——用Python进行数值计算
插值法的伟大作用我就不说了.... 那么贴代码? 首先说一下下面几点: 1. 已有的数据样本被称之为 "插值节点" 2. 对于特定插值节点,它所对应的插值函数是必定存在且唯一的(关 ...
- codeforces 622F. The Sum of the k-th Powers 拉格朗日插值法
题目链接 求sigma(i : 1 to n)i^k. 为了做这个题这两天真是补了不少数论, 之前连乘法逆元都不知道... 关于拉格朗日插值法, 我是看的这里http://www.guokr.com/ ...
- bzoj4559[JLoi2016]成绩比较 容斥+拉格朗日插值法
4559: [JLoi2016]成绩比较 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 261 Solved: 165[Submit][Status ...
- 集训DAYn——拉格朗日插值法
看zzq大佬的博客,看到了这个看似很深奥的东西,实际很简单(反正比FFT简单,我是一个要被FFT整疯了的孩子) 拉格朗日插值法 是什么 可以找到一个多项式,其恰好在各个观测点取到观测到的值.这样的多项 ...
- 牛客网多校训练第一场 F - Sum of Maximum(容斥原理 + 拉格朗日插值法)
链接: https://www.nowcoder.com/acm/contest/139/F 题意: 分析: 转载自:http://tokitsukaze.live/2018/07/19/2018ni ...
- 【BZOJ3453】XLkxc [拉格朗日插值法]
XLkxc Time Limit: 20 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description 给定 k,a,n,d,p f(i ...
- Educational Codeforces Round 7 F. The Sum of the k-th Powers 拉格朗日插值法
F. The Sum of the k-th Powers 题目连接: http://www.codeforces.com/contest/622/problem/F Description Ther ...
- [国家集训队] calc(动规+拉格朗日插值法)
题目 P4463 [国家集训队] calc 集训队的题目真是做不动呀\(\%>\_<\%\) 朴素方程 设\(f_{i,j}\)为前\(i\)个数值域\([1,j]\),且序列递增的总贡献 ...
随机推荐
- HTML5自学笔记[ 24 ]canvas绘图之星空草地
<!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8&quo ...
- Linux服务器下用svn创建多个项目
(1): 创建svn仓库路径 mkdir -p /opt/svn/project1 mkdir -p /opt/svn/project2 svnadm ...
- 201. Bitwise AND of Numbers Range -- 连续整数按位与的和
Given a range [m, n] where 0 <= m <= n <= 2147483647, return the bitwise AND of all numbers ...
- Div样式查看器
编写div属性时,经常需要尝试不同的样式,可以用Javascript写一个简单的div样式查看器,方便日常操作: <!DOCTYPE html> <html> <head ...
- Cassandra——类似levelDB的基于p2p架构的分布式NOSQL数据库
C: Consistency 一致性 • A: Availability 可用性(指的是快速获取数据) • P: Tolerance of network Partition 分区容忍性(分布式) 1 ...
- 第一个简单的DEMO
一个联系人管理的DEMO,支持CURD 运行效果图: Controller的设计: 总结: Web API的Controller都继承自ApiController. Web API的Action的命名 ...
- Windows API 文件处理
CloseHandle 关闭一个内核对象.其中包括文件.文件映射.进程.线程.安全和同步对象等 CompareFileTime 对比两个文件的时间 CopyFile 复制文件 CreateDirect ...
- Linux 服务器安全技巧
毋庸置疑,对于系统管理员,提高服务器的安全性是最重要的事情之一.因此,也就有了许多针对这个话题而生的文章.博客和论坛帖子. 一台服务器由大量功能各异的部件组成,这一点使得很难根据每个人的需求去提供定制 ...
- JAVA与指针
首先,提个问题:JAVA中没有指针,JAVA中有指针,哪个一个对呢? 答:都对,JAVA中没有指针,因为我们不能对指针直接操作,像C++那样用->来访问变量. JAVA有指针,因为JDK中封装了 ...
- 告别硬编码-发个获取未导出函数地址的Dll及源码
还在为找内核未导出函数地址而苦恼嘛? 还在为硬编码通用性差而不爽吗? 还在为暴搜内核老蓝屏而痛苦吗? 请看这里: 最近老要用到内核未导出的函数及一些结构,不想再找特征码了,准备到网上找点符号文件解析的 ...