钉子和小球_DP
Description
让一个直径略小于d的小球中心正对着最上面的钉子在板上自由滚落,小球每碰到一个钉子都可能落向左边或右边(概率各1/2),且球的中心还会正对着下一颗将要碰上的钉子。例如图2就是小球一条可能的路径。
我们知道小球落在第i个格子中的概率pi=pi=
,其中i为格子的编号,从左至右依次为0,1,...,n。 现在的问题是计算拔掉某些钉子后,小球落在编号为m的格子中的概率pm。假定最下面一排钉子不会被拔掉。例如图3是某些钉子被拔掉后小球一条可能的路径。

Input
Output
Sample Input
5 2
*
* .
* * *
* . * *
* * * * *
Sample Output
7/16
Source
【题意】在一块木板上,钉上钉子,排布成等边三角形。一个球从顶部开始,自由下落。每碰到一个钉子以后,等概率地向两边继续滚。现从该等边三角形的钉子中,拔去其中某些钉子。求这个球从顶部开始下落,滚到底部某个格子的概率。
#include<iostream>
#include<string.h>
#include<stdio.h>
using namespace std;
char s[];
char mp[][];
long long dp[][];
long long gcd(long long a,long long b)//求最大公约数
{
if(!b) return a;
else return gcd(b,a%b);
}
int main()
{
int n,m;
while(~scanf("%d%d",&n,&m))
{
for(int i=;i<=n;i++)
{
for(int j=;j<=i;j++)//空格可以无限多,字符串输入
{
cin>>s;
mp[i][j]=s[];
}
}
memset(dp,,sizeof(dp));
dp[][]=1ll<<n;//dp是longlong型的,而1是int型的,所以在1后面加上ll,学了一招
for(int i=;i<=n;i++)
{
for(int j=;j<=i;j++)
{
if(mp[i][j]=='*')//是钉子,往下滚的时候两个口子的概率都是一半;
{
dp[i+][j]+=dp[i][j]>>;
dp[i+][j+]+=dp[i][j]>>;
}
else if(mp[i][j]=='.')//没有钉子,直接往下掉,但因为i行的第j个空对下来是第i+2行的j+1个空,这里要注意一点,刚开始理所当然的以为是j对j了....
dp[i+][j+]+=dp[i][j];
}
}
long long w=dp[n+][m+];
long long sum=;
for(int i=;i<=n+;i++)
{
sum+=dp[n+][i];
}
long long k;
k=gcd(sum,w);
printf("%lld/%lld\n",w/k,sum/k);
}
return ;
}
钉子和小球_DP的更多相关文章
- codevs 1709 钉子和小球
1709 钉子和小球 1999年NOI全国竞赛 时间限制: 2 s 空间限制: 128000 KB 题目等级 : 大师 Master 题解 查看运行结果题目描述 Description有一个三角形木板 ...
- bzoj千题计划189:bzoj1867: [Noi1999]钉子和小球
http://www.lydsy.com/JudgeOnline/problem.php?id=1867 dp[i][j] 落到(i,j)的方案数 dp[i][j]=0.5*dp[i-1][j] ...
- POJ-1189 钉子和小球(动态规划)
钉子和小球 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 7452 Accepted: 2262 Description 有一个 ...
- [bzoj1867][Noi1999][钉子和小球] (动态规划)
Description Input 第1行为整数n(2<=n<=50)和m(0<=m<=n).以下n行依次为木板上从上至下n行钉子的信息,每行中‘*’表示钉子还在,‘.’表示钉 ...
- [POJ1189][BZOJ1867][CODEVS1709]钉子和小球
题目描述 Description 有一个三角形木板,竖直立放,上面钉着n(n+1)/2颗钉子,还有(n+1)个格子(当n=5时如图1).每颗钉子和周围的钉子的距离都等于d,每个格子的宽度也都等于d,且 ...
- POJ1189钉子和小球(DP)
对钉子DP,如果钉子存在DP[i+1][j]+=DP[i][j]; DP[i+1][j+1]+=DP[i][j]; 如果不存在DP[i+2][j+1]+=4*DP[i][j]; 见代码:(有一个比较坑 ...
- 2018.09.24 bzoj1867: [Noi1999]钉子和小球(概率dp)
传送门 概率dp经典题. 如果当前位置(i,j)(i,j)(i,j)有钉子,那么掉到(i+1,j),(i+1,j+1)(i+1,j),(i+1,j+1)(i+1,j),(i+1,j+1)的概率都是1/ ...
- BZOJ 1867 [Noi1999]钉子和小球 DP
想状态和钉子的位置如何匹配想了半天...后来发现不是一样的吗$qwq$ 思路:当然是$DP$啦 提交:>5次(以为无故$RE$,实则是先乘后除爆了$long\space long$) 题解: 若 ...
- 【OpenJudge 191】【POJ 1189】钉子和小球
http://noi.openjudge.cn/ch0405/191/ http://poj.org/problem?id=1189 一开始忘了\(2^{50}\)没超long long差点写高精度Q ...
随机推荐
- java 多线程——一个定时调度的例子
java 多线程 目录: Java 多线程——基础知识 Java 多线程 —— synchronized关键字 java 多线程——一个定时调度的例子 java 多线程——quartz 定时调度的例子 ...
- Play Framework介绍:主要概念(转)
Play Framework是一个Rails风格的Full-stack Java Web框架. MVC模型 Play应用遵循Web架构使用的MVC架构模式. 它将应用分离到不同的层中:表现层(Pres ...
- 跨服务器导入数据SQL语句及其问题解决方案
--跨服务器导入数据SQL语句: insert into [shsw_manager].[dbo].[Station_List]select * from OPENROWSET('SQLOLEDB', ...
- weblogic部署ssh2应用出现异常
一般在domains\your_Domain\bin\startWebLogic.cmd 中找到set CLASSPATH=%CLASSPATH%;%MEDREC_WEBLOGIC_CLASSPATH ...
- js 获得每周周日到周一日期
//得到每周的第一天(周日)function getFirstDateOfWeek(theDate){ var firstDateOfWeek; theDate.setDate(theDate.get ...
- 我们无法找到服务器加载工作簿的数据模型"的 SharePoint 网站,当您刷新 Excel 2013 工作簿中的数据透视表时出错
假定您使用 Analysis Services 源在 Microsoft Excel 2013 中创建数据透视表.将 Excel 工作簿上载到 Microsoft SharePoint 网站中.当您尝 ...
- API 菜单函数
AppendMenu 在指定的菜单里添加一个菜单项 CheckMenuItem 复选或撤消复选指定的菜单条目 CheckMenuRadioItem 指定一个菜单条目被复选成"单选" ...
- sphinx全文检索功能 | windows下测试 (二)
sphinx 数据库检索需要对数据库重新生成索引,为自己所用,然后按照拆词匹配
- NGINX Plus 现在完全支持 HTTP/2
早些时候,我们发布了支持 HTTP/2 协议的 NGINX Plus R7.作为 HTTP 协议的最新标准,HTTP/2 的设计为现在的 web 应用程序带来了更高的性能和安全性.(LCTT 译注: ...
- 转: Jsp9个内置对象详解
1.request对象 客户端的请求信息被封装在request对象中,通过它才能了解到客户的需求, 然后做出响应.它是HttpServletRequest类的实例. 序号方法说明 objectgetA ...