如何才能将Faster R-CNN训练起来?

  首先进入 Faster RCNN 的官网啦,即:https://github.com/rbgirshick/py-faster-rcnn#installation-sufficient-for-the-demo

  先用提供的 model 自己测试一下效果嘛。。。

  按照官网安装教程,安装基本需求。

  


Installation (sufficient for the demo)

  1. Clone the Faster R-CNN repository

    # Make sure to clone with --recursive
    git clone --recursive https://github.com/rbgirshick/py-faster-rcnn.git
  2. We'll call the directory that you cloned Faster R-CNN into FRCN_ROOT

    Ignore notes 1 and 2 if you followed step 1 above.

    Note 1: If you didn't clone Faster R-CNN with the --recursive flag, then you'll need to manually clone the caffe-fast-rcnn submodule:

    git submodule update --init --recursive

    Note 2: The caffe-fast-rcnn submodule needs to be on the faster-rcnn branch (or equivalent detached state). This will happen automatically if you followed step 1 instructions.

  3. Build the Cython modules

    cd $FRCN_ROOT/lib
    make
  4. Build Caffe and pycaffe

    cd $FRCN_ROOT/caffe-fast-rcnn
    # Now follow the Caffe installation instructions here:
    # http://caffe.berkeleyvision.org/installation.html # If you're experienced with Caffe and have all of the requirements installed
    # and your Makefile.config in place, then simply do:
    make -j8 && make pycaffe
  5. Download pre-computed Faster R-CNN detectors

    cd $FRCN_ROOT
    ./data/scripts/fetch_faster_rcnn_models.sh

    This will populate the $FRCN_ROOT/data folder with faster_rcnn_models. See data/README.md for details. These models were trained on VOC 2007 trainval.

Demo

After successfully completing basic installation, you'll be ready to run the demo.

To run the demo

cd $FRCN_ROOT
./tools/demo.py

The demo performs detection using a VGG16 network trained for detection on PASCAL VOC 2007.


  你自己要下载一个 caffe-master,因为这个检测方法就是调用 caffe的啦,自己下载了,然后放到(注意,是拷贝内容):

  ./py-faster-rcnn-master/caffe-fast-rcnn/

  然而,情况总是不太顺利啊,遇到了如下问题:


  执行 demo 的过程中,遇到的首个问题是:

wangxiao@GTX980:~/Desktop/py-faster-rcnn-master$ ./tools/demo.py
Traceback (most recent call last):
File "./tools/demo.py", line 18, in <module>
from fast_rcnn.test import im_detect
File "/home/wangxiao/Desktop/py-faster-rcnn-master/tools/../lib/fast_rcnn/test.py", line 16, in <module>
import caffe
File "/home/wangxiao/Desktop/py-faster-rcnn-master/tools/../caffe-fast-rcnn/python/caffe/__init__.py", line 1, in <module>
from .pycaffe import Net, SGDSolver, NesterovSolver, AdaGradSolver, RMSPropSolver, AdaDeltaSolver, AdamSolver
File "/home/wangxiao/Desktop/py-faster-rcnn-master/tools/../caffe-fast-rcnn/python/caffe/pycaffe.py", line 15, in <module>
import caffe.io
File "/home/wangxiao/Desktop/py-faster-rcnn-master/tools/../caffe-fast-rcnn/python/caffe/io.py", line 2, in <module>
import skimage.io
ImportError: No module named skimage.io
wangxiao@GTX980:~/Desktop/py-faster-rcnn-master$

  解决方法是: sudo easy_install -U scikit-image


  那么,就这样完了?? 噢,no,并不是:

  

wangxiao@GTX980:~/Desktop/py-faster-rcnn-master/tools$ ./demo.py
/usr/local/lib/python2.7/dist-packages/matplotlib-2.0.0b3-py2.7-linux-x86_64.egg/matplotlib/font_manager.py:279: UserWarning: Matplotlib is building the font cache using fc-list. This may take a moment.
warnings.warn('Matplotlib is building the font cache using fc-list. This may take a moment.')
Traceback (most recent call last):
File "./demo.py", line 127, in <module>
'fetch_faster_rcnn_models.sh?').format(caffemodel))
IOError: /home/wangxiao/Desktop/py-faster-rcnn-master/data/faster_rcnn_models/VGG16_faster_rcnn_final.caffemodel not found.
Did you run ./data/script/fetch_faster_rcnn_models.sh?

  因为你测试的时候,没有提供给他测试的 model啊,ok,执行这句吧,下载一个模型:

   ./data/script/fetch_faster_rcnn_models.sh

  速度还是有点慢的,耐心等候啊,少年!

  


  然后,

wangxiao@GTX980:~/Desktop/py-faster-rcnn-master/tools$ ./demo.py
WARNING: Logging before InitGoogleLogging() is written to STDERR
W0729 10:57:41.107311 7997 _caffe.cpp:122] DEPRECATION WARNING - deprecated use of Python interface
W0729 10:57:41.107381 7997 _caffe.cpp:123] Use this instead (with the named "weights" parameter):
W0729 10:57:41.107398 7997 _caffe.cpp:125] Net('/home/wangxiao/Desktop/py-faster-rcnn-master/models/pascal_voc/VGG16/faster_rcnn_alt_opt/faster_rcnn_test.pt', 1, weights='/home/wangxiao/Desktop/py-faster-rcnn-master/data/faster_rcnn_models/VGG16_faster_rcnn_final.caffemodel')
[libprotobuf ERROR google/protobuf/text_format.cc:245] Error parsing text-format caffe.NetParameter: 350:21: Message type "caffe.LayerParameter" has no field named "roi_pooling_param".
F0729 10:57:41.132531 7997 upgrade_proto.cpp:79] Check failed: ReadProtoFromTextFile(param_file, param) Failed to parse NetParameter file: /home/wangxiao/Desktop/py-faster-rcnn-master/models/pascal_voc/VGG16/faster_rcnn_alt_opt/faster_rcnn_test.pt
*** Check failure stack trace: ***
Aborted
wangxiao@GTX980:~/Desktop/py-faster-rcnn-master/tools$


  我更新了一下系统,但是提示我无法更新啊。。。

wangxiao@GTX980:~$ sudo apt-get update
[sudo] password for wangxiao:
E: Type 'Reading' is not known on line 1 in source list /etc/apt/sources.list.d/bazel.list
E: The list of sources could not be read.

  进去这个路径,将这个文件删掉,即可,即:sudo rm /etc/apt/sources.list.d/bazel.list


  之前出现各种蛋疼的情况主要是因为:不能自己从caffe官网下的那个caffe来用,而应该是从作者自己的 github上来下。

  然后加到对应的文件夹进行编译,就不会出现这些问题了。

  


  至于训练的话,有两种方式,一种是: end-to-end,即:

  在终端执行:选择 GPU-0,网络为: ZF 数据集为: pascal_voc

  ./experiments/scripts/faster_rcnn_end2end.sh 0 ZF pascal_voc

  那么,就可以跑了 。。。

  

  不像 matlab版本那么蛋疼,跑一下,就会自动关闭matlab一次,╮(╯▽╰)╭ 伤不起 。。。


  这是最终跑出来的结果:mAP 是:59.09 %   

Saving cached annotations to /home/wangxiao/Desktop/py-faster-rcnn-master/data/VOCdevkit2007/annotations_cache/annots.pkl
AP for aeroplane = 0.6043
AP for bicycle = 0.7138
AP for bird = 0.5504
AP for boat = 0.4721
AP for bottle = 0.3404
AP for bus = 0.6633
AP for car = 0.7369
AP for cat = 0.7021
AP for chair = 0.3631
AP for cow = 0.6086
AP for diningtable = 0.6191
AP for dog = 0.6469
AP for horse = 0.7789
AP for motorbike = 0.6782
AP for person = 0.6489
AP for pottedplant = 0.3073
AP for sheep = 0.5715
AP for sofa = 0.5015
AP for train = 0.7026
AP for tvmonitor = 0.6089
Mean AP = 0.5909
~~~~~~~~
Results:
0.604
0.714
0.550
0.472
0.340
0.663
0.737
0.702
0.363
0.609
0.619
0.647
0.779
0.678
0.649
0.307
0.571
0.502
0.703
0.609
0.591
~~~~~~~~

--------------------------------------------------------------
Results computed with the **unofficial** Python eval code.
Results should be very close to the official MATLAB eval code.
Recompute with `./tools/reval.py --matlab ...` for your paper.
-- Thanks, The Management
--------------------------------------------------------------

real 5m25.471s
user 5m11.620s
sys 0m35.848s


  Matlab 版本碰到过如下的问题:

  1. 找不到 ZF文件夹下面的 test.prototxt 文件:

    

fast_rcnn startup done
GPU 1: free memory 3786178560
Use GPU 1
Error using CHECK_FILE_EXIST (line 4)
/home/wangxiao/Desktop/matlab-faster_rcnn-master/experiments/models/rpn_prototxts/ZF/test.prototxt does not exist

Error in caffe.get_net (line 21)
CHECK_FILE_EXIST(model_file);

Error in caffe.Net (line 31)
self = caffe.get_net(varargin{:});

Error in proposal_calc_output_size (line 10)
caffe_net = caffe.Net(test_net_def_file, 'test');

Error in script_faster_rcnn_VOC2007_ZF>proposal_prepare_anchors (line 91)
[output_width_map, output_height_map] ...

Error in script_faster_rcnn_VOC2007_ZF (line 41)
[conf_proposal.anchors, conf_proposal.output_width_map, conf_proposal.output_height_map] ...

解决方案是:没有下载那个文件,囧,下载地址:https://onedrive.live.com/download?resid=36FEC490FBC32F1A!113&authkey=!AIzdm0sD_SmhUQ4&ithint=file%2czip

2. 将上一个问题搞定后,有出现新的,这个有点摸不着头脑了:

fast_rcnn startup done
GPU 1: free memory 3761143808
Use GPU 1
No appropriate method, property, or field reshape_as_input for class caffe.Net.

Error in proposal_calc_output_size (line 28)
caffe_net.reshape_as_input(net_inputs);

Error in script_faster_rcnn_VOC2007_ZF>proposal_prepare_anchors (line 91)
[output_width_map, output_height_map] ...

Error in script_faster_rcnn_VOC2007_ZF (line 41)
[conf_proposal.anchors, conf_proposal.output_width_map, conf_proposal.output_height_map]
...

解决方法是:可能是你 caffe 版本不对,重新从 faster rcnn 官网上下载,然后编译 。。。 

3. 更蛋疼的是这个问题,表面上看,正在运行,但是 这个时候你看看终端上的显示:

File not found: ./models/rpn_prototxts/ZF/train_vali.prototxt

但是,这个文件明明就放在那里啊。。。无语。。。

解决方案是:由于下载的model中,关于 prototxt文件中路径的问题,请改为绝对路径,如下图所示,且用”/“作为分隔符,因为下载了的分隔符是不对的,所以,一直找不到这个文件,哎,坑啊。。。。

  

搞完之后,就可以继续正常的运行了。。。

fast_rcnn startup done
GPU 1: free memory 3676987392
Use GPU 1
Warning: Specified caffe folder
(/home/wangxiao/Documents/faster_rcnn-master/experiments/external/caffe/matlab/caffe_faster_rcnn) is not exist,
change to default one (/home/wangxiao/Documents/faster_rcnn-master/experiments/external/caffe/matlab)
> In active_caffe_mex at 19
In script_faster_rcnn_VOC2007_ZF at 17
Cleared 0 solvers and 1 stand-alone nets ***************
stage one proposal
***************
conf:
batch_size: 256
bg_thresh_hi: 0.3000
bg_thresh_lo: 0
bg_weight: 1
drop_boxes_runoff_image: 1
feat_stride: 16
fg_fraction: 0.5000
fg_thresh: 0.7000
image_means: [224x224x3 single]
ims_per_batch: 1
max_size: 1000
rng_seed: 6
scales: 600
target_only_gt: 1
test_binary: 0
test_drop_boxes_runoff_image: 0
test_max_size: 1000
test_min_box_size: 16
test_nms: 0.3000
test_scales: 600
use_flipped: 1
use_gpu: 1
anchors: [9x4 double]
output_width_map: [901x1 containers.Map]
output_height_map: [901x1 containers.Map] opts:
cache_name: 'faster_rcnn_VOC2007_ZF_stage1_rpn'
conf: [1x1 struct]
do_val: 1
imdb_train: {[1x1 struct]}
imdb_val: [1x1 struct]
net_file: '/home/wangxiao/Documents/faster_rcnn-master/experiments/models/pre_trained_models/ZF/ZF...'
roidb_train: {[1x1 struct]}
roidb_val: [1x1 struct]
snapshot_interval: 10000
solver_def_file: '/home/wangxiao/Documents/faster_rcnn-master/experiments/models/rpn_prototxts/ZF/solver_...'
val_interval: 2000
val_iters: 500 Preparing training data...Starting parallel pool (parpool) using the 'local' profile ... connected to 4 workers.
Done.
Preparing validation data...Done. ------------------------- Iteration 2000 -------------------------
Training : err_fg 0.521, err_bg 0.0187, loss (cls 0.242 + reg 0.0218)
Testing : err_fg 0.487, err_bg 0.0131, loss (cls 0.203 + reg 0.0167) ------------------------- Iteration 4000 -------------------------
Training : err_fg 0.495, err_bg 0.0187, loss (cls 0.209 + reg 0.0206)
Testing : err_fg 0.458, err_bg 0.0143, loss (cls 0.182 + reg 0.0158) ------------------------- Iteration 6000 -------------------------
Training : err_fg 0.462, err_bg 0.0205, loss (cls 0.196 + reg 0.0189)
Testing : err_fg 0.409, err_bg 0.0229, loss (cls 0.177 + reg 0.0184) ------------------------- Iteration 8000 -------------------------
Training : err_fg 0.46, err_bg 0.0196, loss (cls 0.19 + reg 0.0194)
Testing : err_fg 0.404, err_bg 0.0163, loss (cls 0.165 + reg 0.0151) ------------------------- Iteration 10000 -------------------------
Training : err_fg 0.437, err_bg 0.0202, loss (cls 0.179 + reg 0.0189)
Testing : err_fg 0.413, err_bg 0.0154, loss (cls 0.168 + reg 0.0158)
Saved as /home/wangxiao/Documents/faster_rcnn-master/experiments/output/rpn_cachedir/faster_rcnn_VOC2007_ZF_stage1_rpn/voc_2007_trainval/iter_10000

  

 4. Faster RCNN 运行出现问题:

fast_rcnn startup done
Error using gpuDevice (line 26)
An unexpected error occurred during CUDA execution. The CUDA error was:
cannot set while device is active in this process

Error in auto_select_gpu (line 15)
g = gpuDevice(i);

Error in script_faster_rcnn_VOC2007_ZF (line 16)
opts.gpu_id = auto_select_gpu;


答:如果之前正常运行,突然出现这个问题,重启你的 matlab,然后以 sudo 开启,重新跑一下就没事了。。。

 5. 下面是今天重新跑 faster RCNN 遇到的一个问题:

 

 

解决方案是:

  数据集的名字或者文件夹不存在,额,将数据集加上就行了...


  

6. 之前一直很纳闷,script_faster_rcnn_VOC0712_VGG16.m 这个脚本的数据集该怎么设置? 是分别单独设置两个文件夹,还是将其放到一个文件夹中???

  看到这个代码,我终于恍然大悟 ...

  

7.

如何才能将Faster R-CNN训练起来?的更多相关文章

  1. CNN训练Cifar-10技巧

    关于数据集 Cifar-10是由Hinton的两个大弟子Alex Krizhevsky.Ilya Sutskever收集的一个用于普适物体识别的数据集.Cifar是加拿大政府牵头投资的一个先进科学项目 ...

  2. Faster RCNN算法训练代码解析(2)

    接着上篇的博客,我们获取imdb和roidb的数据后,就可以搭建网络进行训练了. 我们回到trian_rpn()函数里面,此时运行完了roidb, imdb = get_roidb(imdb_name ...

  3. Faster RCNN算法训练代码解析(1)

    这周看完faster-rcnn后,应该对其源码进行一个解析,以便后面的使用. 那首先直接先主函数出发py-faster-rcnn/tools/train_faster_rcnn_alt_opt.py ...

  4. 自主搭建CNN训练时遇到的问题

    1.训练太慢 用nimibatch代替fullbatch https://www.cnblogs.com/guoyaohua/p/8724433.html 2.过拟合 最直接的解决过拟合问题的办法是增 ...

  5. 使用卷积神经网络CNN训练识别mnist

    算的的上是自己搭建的第一个卷积神经网络.网络结构比较简单. 输入为单通道的mnist数据集.它是一张28*28,包含784个特征值的图片 我们第一层输入,使用5*5的卷积核进行卷积,输出32张特征图, ...

  6. 神经网络CNN训练心得--调参经验

    1.样本要随机化,防止大数据淹没小数据 2.样本要做归一化.关于归一化的好处请参考:为何需要归一化处理3.激活函数要视样本输入选择(多层神经网络一般使用relu)4.mini batch很重要,几百是 ...

  7. CNN训练中的技巧

    转自: http://weibo.com/p/1001603816330729006673 说明:这个翻译应该是来自原文:http://yyue.blogspot.hk/2015/01/a-brief ...

  8. Faster RCNN算法训练代码解析(3)

    四个层的forward函数分析: RoIDataLayer:读数据,随机打乱等 AnchorTargetLayer:输出所有anchors(这里分析这个) ProposalLayer:用产生的anch ...

  9. ubuntu14.04上实现faster rcnn_TF的demo程序及训练过程

    安装环境:Ubuntu14.04.显卡Tesla K40C+GeForce GT 705.tensorflow1.0.0.pycharm5.0 说明:原文见博客园,有问题原文下留言,不定期回复.本文作 ...

随机推荐

  1. JS中 window的用法

    1.window.location.reload();作用是刷新当前页面

  2. Ubuntu 14.10 下安装navicat

    1 下载navicat,网址http://www.navicat.com.cn/download,我下载的是navicat111_premium_cs.tar.gz 2 解压到合适的位置 3 进入解压 ...

  3. encodeURIComponent编码2次

    最近在项目中发现前台在往anction中发送数据时进行两次encodeURIComponent,经过上网查找发现以下解释比较合理,mask过来,以供参考,非常感谢原作者!!! 两次encodeURIC ...

  4. (function($){...})(jQuery) 含义

    最近在项目js文件末端中发现这样的代码,对于前端技术比较薄弱的我,着实还是有点晕,好在查阅到了相关资料,现解释如下: (function($){  $.plugin = new org.plugin. ...

  5. Python学习路程day6

    shelve 模块 shelve模块是一个简单的k,v将内存数据通过文件持久化的模块,可以持久化任何pickle可支持的python数据格式 import shelve d = shelve.open ...

  6. 解决:Android编译源码根目录下/system/vold后,通过push命令将编译生成的vold文件push至system/bin下无法正常开机

    这段时间由于工作需要,在对android根目录下/system/vold进行修改编译的时候,在通过adb命令将vold文件push至/system/bin目录下,adb reboot重启手机却发现一直 ...

  7. Interview----用最快的方法计算 Fibonacci 数

    输入 n, 用最快的方法求该 Fibocacci 数列的第 n 项. 方法1: 递归,非常慢 方法2: 迭代,因此计算 f[1] , f[2], f[3] ,,,, 复杂度 O(N) 方法3: 采用以 ...

  8. PHP图像处理之在原图像处理

    处理原有的图像        图片处理,缩放,裁剪,翻转,旋转,透明,锐化等图片操作        一.创建图片资源            imagecreatetruecolor(width,hei ...

  9. 利用 Postfix 抵擋垃圾信

    reject_unknown_client               //add 20151117

  10. 转:Enterprise Library 4.0缓存应用程序块

    英文原文:http://msdn.microsoft.com/zh-cn/library/cc511588(en-us).aspx Enterprise Library 缓存应用程序块允许开发人员在应 ...