GCD Again

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1997    Accepted Submission(s): 772

Problem Description
Do you have spent some time to think and try to solve those unsolved problem after one ACM contest?
No? Oh, you must do this when you want to become a "Big Cattle".
Now you will find that this problem is so familiar:
The greatest common divisor GCD (a, b) of two positive integers a and b, sometimes written (a, b), is the largest divisor common to a and b. For example, (1, 2) =1, (12, 18) =6. (a, b) can be easily found by the Euclidean algorithm. Now I am considering a little more difficult problem: 
Given an integer N, please count the number of the integers M (0<M<N) which satisfies (N,M)>1.
This is a simple version of problem “GCD” which you have done in a contest recently,so I name this problem “GCD Again”.If you cannot solve it still,please take a good think about your method of study.
Good Luck!
 
Input
Input contains multiple test cases. Each test case contains an integers N (1<N<100000000). A test case containing 0 terminates the input and this test case is not to be processed.
 
Output
For each integers N you should output the number of integers M in one line, and with one line of output for each line in input. 
 
Sample Input
2
4
0
 
Sample Output
0
1
 
Author
lcy
 
Source
 
Recommend
lcy

用来试验下模板。

求欧拉函数就可以了

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
using namespace std; long long eular(long long n)
{
long long ans = n;
for(int i = ;i*i <= n;i++)
{
if(n % i == )
{
ans -= ans/i;
while(n % i == )
n /= i;
}
}
if(n > )ans -= ans/n;
return ans;
} int main()
{
int n;
while(scanf("%d",&n) == && n)
{
int ret = eular(n);
printf("%d\n",n-ret-);
}
return ;
}

HDU 1787 GCD Again(欧拉函数,水题)的更多相关文章

  1. hdu 1787 GCD Again (欧拉函数)

    GCD Again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  2. HDU 6322.Problem D. Euler Function -欧拉函数水题(假的数论题 ̄▽ ̄) (2018 Multi-University Training Contest 3 1004)

    6322.Problem D. Euler Function 题意就是找欧拉函数为合数的第n个数是什么. 欧拉函数从1到50打个表,发现规律,然后勇敢的水一下就过了. 官方题解: 代码: //1004 ...

  3. HDU 1695 GCD (欧拉函数+容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  4. HDU 1695 GCD(欧拉函数+容斥原理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...

  5. hdu 1695 GCD(欧拉函数+容斥)

    Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD( ...

  6. HDU 2588 GCD(欧拉函数)

    GCD Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  7. 题解报告:hdu 2588 GCD(欧拉函数)

    Description The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written ...

  8. hdu 1695 GCD (欧拉函数、容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  9. hdu-1286 找新朋友(欧拉函数,水题)

    题目链接: 找新朋友 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

随机推荐

  1. No resource found that matches the given name

    XML里面明显已经定义了ID,可是android:layout_toLeftOf="@id/text_seller"报错,说没有定义,原来这玩意要写在相对位置对象声明的下面,是有顺 ...

  2. Qt之QHeaderView自定义排序(获取正确的QModelIndex)

    简述 前几节中分享过关于自定义排序的功能,貌似我们之前的内容已经可以很好地解决排序问题了,但是,会由此引发一些很难发现的问题...比如:获取QModelIndex索引错误. 下面,我们先来实现一个整行 ...

  3. 【转】Windows Server 2008 以上服务器配置SMTP

    建立 SMTP 伺服器 [除非特別說明,否則本主題中的內容適用於 BizTalk Server 2013 和 2013 R2.]原文链接:https://msdn.microsoft.com/zh-t ...

  4. Android下Fragment的动画切换效果

    效果图如下: 源码链接   :    请戳这里

  5. 【转】 IOS 项目配置--构建输出DIR

    原文网址:http://blog.csdn.net/fengsh998/article/details/8868871 通常在情一般都不建议使用绝对路径,因为写死之后,换环境,换平台,又要重新修改路径 ...

  6. linux中怎样从底部向上查看log文件

    对于一些很大的log文件,我们用more查看时会很费劲,没有办法直接跳到末尾再向前查看. 我们可以用less来解决,less查看一个文件时,可以使用类似vi的command命令,在command模式下 ...

  7. nginx的配置,要求根据不同的来路域名,发送到不同的端口去处理

    这一台电脑上既有tomcat 也有 apache,他俩是没有办法同时享用80端口的.我现在让tomcat用8088,apache用8080,然后让nginx用80,这样nginx在收到请求后,根据不同 ...

  8. Event/window.Event属性和方法

    type:事件的类型,如onlick中的click:srcElement/target:事件源,就是发生事件的元素:button:声明被按下的鼠标键,整数,1代表左键,2代表右键,4代表中键,如果按下 ...

  9. SVN中检出(check out) 和 导出(export) 的区别

    SVN是常用的一种常见的版本控制软件.SVN中检出(check out) 和 导出(export) 的区别主要有如下几条: check out跟check in对应,export跟import对应. ...

  10. pdm 中怎么修改表的Name值时使Code值不变

    修改方法:PowerDesign中的选项菜单里修改,在[Tool]-->[General Options]->[Dialog]->[Operating modes]->[Nam ...