【BZOJ】【3301】【USACO2011 Feb】Cow Line
康托展开
裸的康托展开&逆康托展开
康托展开就是一种特殊的hash,且是可逆的……
康托展开计算的是有多少种排列的字典序比这个小,所以编号应该+1;逆运算同理(-1)。
序列->序号:(康托展开)
对于每个数a[i],数比它小的数有多少个在它之前没出现,记为b[i],$ans=1+\sum b[i]* (n-i)!$
序号->序列:(逆康托展开)
求第x个排列所对应的序列,先将x-1,然后对于a[i],$\left\lfloor \frac{x}{(n-i)!} \right\rfloor $即为在它之后出现的比它小的数的个数,所以从小到大数一下有几个没出现的数,就知道a[i]是第几个数了。
然而这题在比较答案的时候不忽略行末空格……大家小心一点……
/**************************************************************
Problem: 3301
User: Tunix
Language: C++
Result: Accepted
Time:84 ms
Memory:1276 kb
****************************************************************/ //BZOJ 3301
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define rep(i,n) for(int i=0;i<n;++i)
#define F(i,j,n) for(int i=j;i<=n;++i)
#define D(i,j,n) for(int i=j;i>=n;--i)
#define pb push_back
using namespace std;
typedef long long LL;
inline LL getint(){
LL r=,v=; char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if (ch=='-') r=-;
for(; isdigit(ch);ch=getchar()) v=v*-''+ch;
return r*v;
}
const int N=;
/*******************template********************/
int n,m;
LL fac[N];
int a[N];
bool vis[N];
void pailie(LL x){
memset(vis,,sizeof vis);
F(i,,n){
int t=x/fac[n-i],j,k;
for(k=,j=;j<=t;k++) if (!vis[k]) j++;
vis[k-]=; a[i]=k-;
x%=fac[n-i];
}
F(i,,n-) printf("%d ",a[i]);
printf("%d\n",a[n]);
}
void hanghao(){
LL ans=;
memset(vis,,sizeof vis);
F(i,,n){
int j=,k;
vis[a[i]]=;
F(k,,a[i]) if (!vis[k]) j++;
ans+=j*fac[n-i];
}
printf("%lld\n",ans);
}
int main(){
#ifndef ONLINE_JUDGE
freopen("3301.in","r",stdin);
freopen("3301.out","w",stdout);
#endif
n=getint(); m=getint();
fac[]=;
F(i,,) fac[i]=fac[i-]*i;
// F(i,0,20) printf("%lld ",fac[i]); puts("");
char cmd[];
while(m--){
scanf("%s",cmd);
if (cmd[]=='P'){
LL x=getint()-;
pailie(x);
}else{
F(i,,n) a[i]=getint();
hanghao();
}
}
return ;
}
3301: [USACO2011 Feb] Cow Line
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 84 Solved: 50
[Submit][Status][Discuss]
Description
The N (1 <= N <= 20) cows conveniently numbered 1...N are playing
yet another one of their crazy games with Farmer John. The cows
will arrange themselves in a line and ask Farmer John what their
line number is. In return, Farmer John can give them a line number
and the cows must rearrange themselves into that line.
A line number is assigned by numbering all the permutations of the
line in lexicographic order.
Consider this example:
Farmer John has 5 cows and gives them the line number of 3.
The permutations of the line in ascending lexicographic order:
1st: 1 2 3 4 5
2nd: 1 2 3 5 4
3rd: 1 2 4 3 5
Therefore, the cows will line themselves in the cow line 1 2 4 3 5.
The cows, in return, line themselves in the configuration "1 2 5 3 4" and
ask Farmer John what their line number is.
Continuing with the list:
4th : 1 2 4 5 3
5th : 1 2 5 3 4
Farmer John can see the answer here is 5
Farmer John and the cows would like your help to play their game.
They have K (1 <= K <= 10,000) queries that they need help with.
Query i has two parts: C_i will be the command, which is either 'P'
or 'Q'.
If C_i is 'P', then the second part of the query will be one integer
A_i (1 <= A_i <= N!), which is a line number. This is Farmer John
challenging the cows to line up in the correct cow line.
If C_i is 'Q', then the second part of the query will be N distinct
integers B_ij (1 <= B_ij <= N). This will denote a cow line. These are the
cows challenging Farmer John to find their line number.
有N头牛,分别用1……N表示,排成一行。
将N头牛,所有可能的排列方式,按字典顺序从小到大排列起来。
例如:有5头牛
1st: 1 2 3 4 5
2nd: 1 2 3 5 4
3rd: 1 2 4 3 5
4th : 1 2 4 5 3
5th : 1 2 5 3 4
……
现在,已知N头牛的排列方式,求这种排列方式的行号。
或者已知行号,求牛的排列方式。
所谓行号,是指在N头牛所有可能排列方式,按字典顺序从大到小排列后,某一特定排列方式所在行的编号。
如果,行号是3,则排列方式为1 2 4 3 5
如果,排列方式是 1 2 5 3 4 则行号为5
有K次问答,第i次问答的类型,由C_i来指明,C_i要么是‘P’要么是‘Q’。
当C_i为P时,将提供行号,让你答牛的排列方式。当C_i为Q时,将告诉你牛的排列方式,让你答行号。
Input
* Line 1: Two space-separated integers: N and K
* Lines 2..2*K+1: Line 2*i and 2*i+1 will contain a single query.
Line 2*i will contain just one character: 'Q' if the cows are lining
up and asking Farmer John for their line number or 'P' if Farmer
John gives the cows a line number.
If the line 2*i is 'Q', then line 2*i+1 will contain N space-separated
integers B_ij which represent the cow line. If the line 2*i is 'P',
then line 2*i+1 will contain a single integer A_i which is the line
number to solve for.
第1行:N和K
第2至2*K+1行:Line2*i ,一个字符‘P’或‘Q’,指明类型。
如果Line2*i是P,则Line2*i+1,是一个整数,表示行号;
如果Line2*i+1 是Q ,则Line2+i,是N个空格隔开的整数,表示牛的排列方式。
Output
* Lines 1..K: Line i will contain the answer to query i.
If line 2*i of the input was 'Q', then this line will contain a
single integer, which is the line number of the cow line in line
2*i+1.
If line 2*i of the input was 'P', then this line will contain N
space separated integers giving the cow line of the number in line
2*i+1.
第1至K行:如果输入Line2*i 是P,则输出牛的排列方式;如果输入Line2*i是Q,则输出行号
Sample Input
P
3
Q
1 2 5 3 4
Sample Output
5
HINT
Source
【BZOJ】【3301】【USACO2011 Feb】Cow Line的更多相关文章
- BZOJ2274: [Usaco2011 Feb]Generic Cow Protests
2274: [Usaco2011 Feb]Generic Cow Protests Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 196 Solve ...
- 【bzoj2274】[Usaco2011 Feb]Generic Cow Protests dp+树状数组
题目描述 Farmer John's N (1 <= N <= 100,000) cows are lined up in a row andnumbered 1..N. The cows ...
- BZOJ 2274 [Usaco2011 Feb]Generic Cow Protests
[题解] 很容易可以写出朴素DP方程f[i]=sigma f[j] (sum[i]>=sum[j],1<=j<=i). 于是我们用权值树状数组优化即可. #include<c ...
- [Usaco2011 Feb]Generic Cow Protests
Description Farmer John's N (1 <= N <= 100,000) cows are lined up in a row and numbered 1..N. ...
- 【BZOJ】3301: [USACO2011 Feb] Cow Line(康托展开)
http://www.lydsy.com/JudgeOnline/problem.php?id=3301 其实这一题很早就a过了,但是那时候看题解写完也是似懂非懂的.... 听zyf神犇说是康托展开, ...
- 【BZOJ】2200: [Usaco2011 Jan]道路和航线
[题意]给定n个点的图,正权无向边,正负权有向边,保证对有向边(u,v),v无法到达u,求起点出发到达所有点的最短距离. [算法]拓扑排序+dijkstra [题解]因为有负权边,直接对原图进行spf ...
- 【BZOJ】3052: [wc2013]糖果公园
http://www.lydsy.com/JudgeOnline/problem.php?id=3052 题意:n个带颜色的点(m种),q次询问,每次询问x到y的路径上sum{w[次数]*v[颜色]} ...
- 【BZOJ】3319: 黑白树
http://www.lydsy.com/JudgeOnline/problem.php?id=3319 题意:给一棵n节点的树(n<=1e6),m个操作(m<=1e6),每次操作有两种: ...
- 【BZOJ】3319: 黑白树(并查集+特殊的技巧/-树链剖分+线段树)
http://www.lydsy.com/JudgeOnline/problem.php?id=3319 以为是模板题就复习了下hld............................. 然后n ...
随机推荐
- Bootstrap Alert Auto Close
http://stackoverflow.com/questions/23101966/bootstrap-alert-auto-close http://jsfiddle.net/mfX57/ $( ...
- 配置pxe 自动化安装centos6.7
dhcp服务器是pxe自动化安装的必要条件,因此先搞定dhcp服务器,yum -y install dhcp, rpm -ql dhcp查看安装了哪些包,less /etc/dhcp/dhcpd.c ...
- Wordpress模板标签大全
Wordpress模板基本文件 style.css 样式表文件 index.php 主页文件 single.php 日志单页文件 page.php 页面文件 archvie.php 分类和日期存档页文 ...
- python之poplib库
pop3能实现访问远程主机下载新的邮件或者下载后删掉这些邮件.不支持多信箱,也不能提供持久稳定的邮件认证.也就是说不能使用pop3来作为邮件同步协议. poplib支持多个认证方法.最普遍的是基本的用 ...
- build a git repo and clone
First machine: git init --bare gitrepo.git Second machine: git clone user@server:~/gitrepo.git cd gi ...
- SegmentFault 2014黑客马拉松 北京 作品demo
1号作品展示——最熟悉的陌生人 app 利用录音(声纹识别)和照片来让好久不见的见面变得不那么尴尬. 2号作品展示——神奇魔镜 app 灵感来自通话<白雪公主>,穿越到今天的“魔镜”功能依 ...
- 【转载/修改】ScrollLayout代码修正,追加模仿viewpager滚动速度
组件作用为类似ViewPager但直接插视图的横向滚动容器. 修改自:http://blog.csdn.net/yaoyeyzq/article/details/7571940 在该组件基础上修正了滚 ...
- Oracle Study Note : Tablespace and Data Files
1.how to create a tablespace that employs the most common features create tablespace tb_name #create ...
- bat隐藏文件夹
在windows中隐藏文件是可以隐藏,但是下面红色区域一旦选中,那也就显示出来了 现在有如下代码,可以实现个性化隐藏 ========================================= ...
- SystemServer相关
SystemServer分析 由Zygote通过Zygote.forkSystemServer函数fork出来的.此函数是一个JNI函数,实现在dalvik_system_Zygote.c中. 1.S ...