【BZOJ】【3301】【USACO2011 Feb】Cow Line
康托展开
裸的康托展开&逆康托展开
康托展开就是一种特殊的hash,且是可逆的……
康托展开计算的是有多少种排列的字典序比这个小,所以编号应该+1;逆运算同理(-1)。
序列->序号:(康托展开)
对于每个数a[i],数比它小的数有多少个在它之前没出现,记为b[i],$ans=1+\sum b[i]* (n-i)!$
序号->序列:(逆康托展开)
求第x个排列所对应的序列,先将x-1,然后对于a[i],$\left\lfloor \frac{x}{(n-i)!} \right\rfloor $即为在它之后出现的比它小的数的个数,所以从小到大数一下有几个没出现的数,就知道a[i]是第几个数了。
然而这题在比较答案的时候不忽略行末空格……大家小心一点……
/**************************************************************
Problem: 3301
User: Tunix
Language: C++
Result: Accepted
Time:84 ms
Memory:1276 kb
****************************************************************/ //BZOJ 3301
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define rep(i,n) for(int i=0;i<n;++i)
#define F(i,j,n) for(int i=j;i<=n;++i)
#define D(i,j,n) for(int i=j;i>=n;--i)
#define pb push_back
using namespace std;
typedef long long LL;
inline LL getint(){
LL r=,v=; char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if (ch=='-') r=-;
for(; isdigit(ch);ch=getchar()) v=v*-''+ch;
return r*v;
}
const int N=;
/*******************template********************/
int n,m;
LL fac[N];
int a[N];
bool vis[N];
void pailie(LL x){
memset(vis,,sizeof vis);
F(i,,n){
int t=x/fac[n-i],j,k;
for(k=,j=;j<=t;k++) if (!vis[k]) j++;
vis[k-]=; a[i]=k-;
x%=fac[n-i];
}
F(i,,n-) printf("%d ",a[i]);
printf("%d\n",a[n]);
}
void hanghao(){
LL ans=;
memset(vis,,sizeof vis);
F(i,,n){
int j=,k;
vis[a[i]]=;
F(k,,a[i]) if (!vis[k]) j++;
ans+=j*fac[n-i];
}
printf("%lld\n",ans);
}
int main(){
#ifndef ONLINE_JUDGE
freopen("3301.in","r",stdin);
freopen("3301.out","w",stdout);
#endif
n=getint(); m=getint();
fac[]=;
F(i,,) fac[i]=fac[i-]*i;
// F(i,0,20) printf("%lld ",fac[i]); puts("");
char cmd[];
while(m--){
scanf("%s",cmd);
if (cmd[]=='P'){
LL x=getint()-;
pailie(x);
}else{
F(i,,n) a[i]=getint();
hanghao();
}
}
return ;
}
3301: [USACO2011 Feb] Cow Line
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 84 Solved: 50
[Submit][Status][Discuss]
Description
The N (1 <= N <= 20) cows conveniently numbered 1...N are playing
yet another one of their crazy games with Farmer John. The cows
will arrange themselves in a line and ask Farmer John what their
line number is. In return, Farmer John can give them a line number
and the cows must rearrange themselves into that line.
A line number is assigned by numbering all the permutations of the
line in lexicographic order.
Consider this example:
Farmer John has 5 cows and gives them the line number of 3.
The permutations of the line in ascending lexicographic order:
1st: 1 2 3 4 5
2nd: 1 2 3 5 4
3rd: 1 2 4 3 5
Therefore, the cows will line themselves in the cow line 1 2 4 3 5.
The cows, in return, line themselves in the configuration "1 2 5 3 4" and
ask Farmer John what their line number is.
Continuing with the list:
4th : 1 2 4 5 3
5th : 1 2 5 3 4
Farmer John can see the answer here is 5
Farmer John and the cows would like your help to play their game.
They have K (1 <= K <= 10,000) queries that they need help with.
Query i has two parts: C_i will be the command, which is either 'P'
or 'Q'.
If C_i is 'P', then the second part of the query will be one integer
A_i (1 <= A_i <= N!), which is a line number. This is Farmer John
challenging the cows to line up in the correct cow line.
If C_i is 'Q', then the second part of the query will be N distinct
integers B_ij (1 <= B_ij <= N). This will denote a cow line. These are the
cows challenging Farmer John to find their line number.
有N头牛,分别用1……N表示,排成一行。
将N头牛,所有可能的排列方式,按字典顺序从小到大排列起来。
例如:有5头牛
1st: 1 2 3 4 5
2nd: 1 2 3 5 4
3rd: 1 2 4 3 5
4th : 1 2 4 5 3
5th : 1 2 5 3 4
……
现在,已知N头牛的排列方式,求这种排列方式的行号。
或者已知行号,求牛的排列方式。
所谓行号,是指在N头牛所有可能排列方式,按字典顺序从大到小排列后,某一特定排列方式所在行的编号。
如果,行号是3,则排列方式为1 2 4 3 5
如果,排列方式是 1 2 5 3 4 则行号为5
有K次问答,第i次问答的类型,由C_i来指明,C_i要么是‘P’要么是‘Q’。
当C_i为P时,将提供行号,让你答牛的排列方式。当C_i为Q时,将告诉你牛的排列方式,让你答行号。
Input
* Line 1: Two space-separated integers: N and K
* Lines 2..2*K+1: Line 2*i and 2*i+1 will contain a single query.
Line 2*i will contain just one character: 'Q' if the cows are lining
up and asking Farmer John for their line number or 'P' if Farmer
John gives the cows a line number.
If the line 2*i is 'Q', then line 2*i+1 will contain N space-separated
integers B_ij which represent the cow line. If the line 2*i is 'P',
then line 2*i+1 will contain a single integer A_i which is the line
number to solve for.
第1行:N和K
第2至2*K+1行:Line2*i ,一个字符‘P’或‘Q’,指明类型。
如果Line2*i是P,则Line2*i+1,是一个整数,表示行号;
如果Line2*i+1 是Q ,则Line2+i,是N个空格隔开的整数,表示牛的排列方式。
Output
* Lines 1..K: Line i will contain the answer to query i.
If line 2*i of the input was 'Q', then this line will contain a
single integer, which is the line number of the cow line in line
2*i+1.
If line 2*i of the input was 'P', then this line will contain N
space separated integers giving the cow line of the number in line
2*i+1.
第1至K行:如果输入Line2*i 是P,则输出牛的排列方式;如果输入Line2*i是Q,则输出行号
Sample Input
P
3
Q
1 2 5 3 4
Sample Output
5
HINT
Source
【BZOJ】【3301】【USACO2011 Feb】Cow Line的更多相关文章
- BZOJ2274: [Usaco2011 Feb]Generic Cow Protests
2274: [Usaco2011 Feb]Generic Cow Protests Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 196 Solve ...
- 【bzoj2274】[Usaco2011 Feb]Generic Cow Protests dp+树状数组
题目描述 Farmer John's N (1 <= N <= 100,000) cows are lined up in a row andnumbered 1..N. The cows ...
- BZOJ 2274 [Usaco2011 Feb]Generic Cow Protests
[题解] 很容易可以写出朴素DP方程f[i]=sigma f[j] (sum[i]>=sum[j],1<=j<=i). 于是我们用权值树状数组优化即可. #include<c ...
- [Usaco2011 Feb]Generic Cow Protests
Description Farmer John's N (1 <= N <= 100,000) cows are lined up in a row and numbered 1..N. ...
- 【BZOJ】3301: [USACO2011 Feb] Cow Line(康托展开)
http://www.lydsy.com/JudgeOnline/problem.php?id=3301 其实这一题很早就a过了,但是那时候看题解写完也是似懂非懂的.... 听zyf神犇说是康托展开, ...
- 【BZOJ】2200: [Usaco2011 Jan]道路和航线
[题意]给定n个点的图,正权无向边,正负权有向边,保证对有向边(u,v),v无法到达u,求起点出发到达所有点的最短距离. [算法]拓扑排序+dijkstra [题解]因为有负权边,直接对原图进行spf ...
- 【BZOJ】3052: [wc2013]糖果公园
http://www.lydsy.com/JudgeOnline/problem.php?id=3052 题意:n个带颜色的点(m种),q次询问,每次询问x到y的路径上sum{w[次数]*v[颜色]} ...
- 【BZOJ】3319: 黑白树
http://www.lydsy.com/JudgeOnline/problem.php?id=3319 题意:给一棵n节点的树(n<=1e6),m个操作(m<=1e6),每次操作有两种: ...
- 【BZOJ】3319: 黑白树(并查集+特殊的技巧/-树链剖分+线段树)
http://www.lydsy.com/JudgeOnline/problem.php?id=3319 以为是模板题就复习了下hld............................. 然后n ...
随机推荐
- IMAP收邮件
using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...
- 了解Unix进程(1)
今天瞎看 看到一本了解Unix进程 -- 理解UNIX进程 的书 不错,可以看看,使用的ruby语言,第一章讲的是一些基础的知识 1.输出进程号和父进程号: puts Process.pid # 得到 ...
- int 类型 占多少字节是由什么决定的
int 类型占据多少字节?到底是跟编译器有关?还是系统来决定的? 1. CPU的设计者才不管你在上面跑什么程序.他们只是按着他们的想法来设计.而int的大小,至少在C/C++中,标准只说可以由实现者自 ...
- 【easyui】--普通js中获取easyui中分页信息(page,pageSize等)
对于datagrid,获取其分页信息: 方法: var pageopt = $('#list_data').datagrid('getPager').data("pagination&quo ...
- 02-线性结构2 Reversing Linked List
由于最近学的是线性结构,且因数组需开辟的空间太大.因此这里用的是纯链表实现的这个链表翻转. Given a constant K and a singly linked list L, you are ...
- 对"使用Mono Runtime Bundle制作安装包让C#桌面应用程序脱离net framework"增加说明
http://www.cnblogs.com/basilwang/archive/2011/11/29/2267809.html 想做独立引用的估计都看过这一篇文章,但是因为软件更新,很多地方已经不适 ...
- openSUSE13.1无法打开Yast的安装/移除软件管理软件的解决办法·(未解决,临时方法) 收获:有问题,读日志
看了日志发现错误在于Ruby,新的YaST是基于Ruby的,而我用rvm安了新版本Ruby,日志里这么出错: 2014-08-22 20:20:57 <3> linux-vfpp.site ...
- 关于activity_main.xml与fragment_main.xml
第一种解决办法 新版安装SDK文件一开始有两个XML文件,activity_main.xml和fragment_main.xml,不习惯的可以这样处理:1.删除fragment_main.xml整个文 ...
- 透过数据看现实,漫谈实况FIFA的这些年
虽然,只是个普通玩家,虽然带了一点青春,一点爱.虽然,有那么些怀念 ~ 好吧,不浪费篇幅伪伪的煽情,直插主题.(很长且多图,更多讲述的是实况FIFA间的你来我往,互相赶超的故事.本想全面展开描述细节, ...
- HTML5的placeholder属性如何实现换行
在HTML5中,placeholder是一个非常有用的属性,当控件中无内容时可以代替UI控件的提示功能,而不需要写额外的代码.但如果有一个textarea控件,我们需要多行的文本提示信息时,使用”\n ...