康托展开


  裸的康托展开&逆康托展开

  康托展开就是一种特殊的hash,且是可逆的……

  康托展开计算的是有多少种排列的字典序比这个小,所以编号应该+1;逆运算同理(-1)。

  序列->序号:(康托展开)

    对于每个数a[i],数比它小的数有多少个在它之前没出现,记为b[i],$ans=1+\sum b[i]* (n-i)!$

  序号->序列:(逆康托展开)

    求第x个排列所对应的序列,先将x-1,然后对于a[i],$\left\lfloor \frac{x}{(n-i)!} \right\rfloor $即为在它之后出现的比它小的数的个数,所以从小到大数一下有几个没出现的数,就知道a[i]是第几个数了。

然而这题在比较答案的时候不忽略行末空格……大家小心一点……

 /**************************************************************
Problem: 3301
User: Tunix
Language: C++
Result: Accepted
Time:84 ms
Memory:1276 kb
****************************************************************/ //BZOJ 3301
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define rep(i,n) for(int i=0;i<n;++i)
#define F(i,j,n) for(int i=j;i<=n;++i)
#define D(i,j,n) for(int i=j;i>=n;--i)
#define pb push_back
using namespace std;
typedef long long LL;
inline LL getint(){
LL r=,v=; char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if (ch=='-') r=-;
for(; isdigit(ch);ch=getchar()) v=v*-''+ch;
return r*v;
}
const int N=;
/*******************template********************/
int n,m;
LL fac[N];
int a[N];
bool vis[N];
void pailie(LL x){
memset(vis,,sizeof vis);
F(i,,n){
int t=x/fac[n-i],j,k;
for(k=,j=;j<=t;k++) if (!vis[k]) j++;
vis[k-]=; a[i]=k-;
x%=fac[n-i];
}
F(i,,n-) printf("%d ",a[i]);
printf("%d\n",a[n]);
}
void hanghao(){
LL ans=;
memset(vis,,sizeof vis);
F(i,,n){
int j=,k;
vis[a[i]]=;
F(k,,a[i]) if (!vis[k]) j++;
ans+=j*fac[n-i];
}
printf("%lld\n",ans);
}
int main(){
#ifndef ONLINE_JUDGE
freopen("3301.in","r",stdin);
freopen("3301.out","w",stdout);
#endif
n=getint(); m=getint();
fac[]=;
F(i,,) fac[i]=fac[i-]*i;
// F(i,0,20) printf("%lld ",fac[i]); puts("");
char cmd[];
while(m--){
scanf("%s",cmd);
if (cmd[]=='P'){
LL x=getint()-;
pailie(x);
}else{
F(i,,n) a[i]=getint();
hanghao();
}
}
return ;
}

3301: [USACO2011 Feb] Cow Line

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 84  Solved: 50
[Submit][Status][Discuss]

Description

The N (1 <= N <= 20) cows conveniently numbered 1...N are playing
yet another one of their crazy games with Farmer John. The cows
will arrange themselves in a line and ask Farmer John what their
line number is. In return, Farmer John can give them a line number
and the cows must rearrange themselves into that line.
A line number is assigned by numbering all the permutations of the
line in lexicographic order.

Consider this example:
Farmer John has 5 cows and gives them the line number of 3.
The permutations of the line in ascending lexicographic order:
1st: 1 2 3 4 5
2nd: 1 2 3 5 4
3rd: 1 2 4 3 5
Therefore, the cows will line themselves in the cow line 1 2 4 3 5.

The cows, in return, line themselves in the configuration "1 2 5 3 4" and
ask Farmer John what their line number is.

Continuing with the list:
4th : 1 2 4 5 3
5th : 1 2 5 3 4
Farmer John can see the answer here is 5

Farmer John and the cows would like your help to play their game.
They have K (1 <= K <= 10,000) queries that they need help with.
Query i has two parts: C_i will be the command, which is either 'P'
or 'Q'.

If C_i is 'P', then the second part of the query will be one integer
A_i (1 <= A_i <= N!), which is a line number. This is Farmer John
challenging the cows to line up in the correct cow line.

If C_i is 'Q', then the second part of the query will be N distinct
integers B_ij (1 <= B_ij <= N). This will denote a cow line. These are the
cows challenging Farmer John to find their line number.

有N头牛,分别用1……N表示,排成一行。
将N头牛,所有可能的排列方式,按字典顺序从小到大排列起来。
例如:有5头牛
1st: 1 2 3 4 5
2nd: 1 2 3 5 4
3rd: 1 2 4 3 5
4th : 1 2 4 5 3
5th : 1 2 5 3 4
……
现在,已知N头牛的排列方式,求这种排列方式的行号。
或者已知行号,求牛的排列方式。
所谓行号,是指在N头牛所有可能排列方式,按字典顺序从大到小排列后,某一特定排列方式所在行的编号。
如果,行号是3,则排列方式为1 2 4 3 5
如果,排列方式是 1 2 5 3 4 则行号为5

有K次问答,第i次问答的类型,由C_i来指明,C_i要么是‘P’要么是‘Q’。
当C_i为P时,将提供行号,让你答牛的排列方式。当C_i为Q时,将告诉你牛的排列方式,让你答行号。

Input

* Line 1: Two space-separated integers: N and K
* Lines 2..2*K+1: Line 2*i and 2*i+1 will contain a single query.
Line 2*i will contain just one character: 'Q' if the cows are lining
up and asking Farmer John for their line number or 'P' if Farmer
John gives the cows a line number.

If the line 2*i is 'Q', then line 2*i+1 will contain N space-separated
integers B_ij which represent the cow line. If the line 2*i is 'P',
then line 2*i+1 will contain a single integer A_i which is the line
number to solve for.

第1行:N和K
第2至2*K+1行:Line2*i ,一个字符‘P’或‘Q’,指明类型。
如果Line2*i是P,则Line2*i+1,是一个整数,表示行号;
如果Line2*i+1 是Q ,则Line2+i,是N个空格隔开的整数,表示牛的排列方式。

Output

* Lines 1..K: Line i will contain the answer to query i.

If line 2*i of the input was 'Q', then this line will contain a
single integer, which is the line number of the cow line in line
2*i+1.

If line 2*i of the input was 'P', then this line will contain N
space separated integers giving the cow line of the number in line
2*i+1.
第1至K行:如果输入Line2*i 是P,则输出牛的排列方式;如果输入Line2*i是Q,则输出行号

Sample Input

5 2
P
3
Q
1 2 5 3 4

Sample Output

1 2 4 3 5
5

HINT

Source

[Submit][Status][Discuss]

【BZOJ】【3301】【USACO2011 Feb】Cow Line的更多相关文章

  1. BZOJ2274: [Usaco2011 Feb]Generic Cow Protests

    2274: [Usaco2011 Feb]Generic Cow Protests Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 196  Solve ...

  2. 【bzoj2274】[Usaco2011 Feb]Generic Cow Protests dp+树状数组

    题目描述 Farmer John's N (1 <= N <= 100,000) cows are lined up in a row andnumbered 1..N. The cows ...

  3. BZOJ 2274 [Usaco2011 Feb]Generic Cow Protests

    [题解] 很容易可以写出朴素DP方程f[i]=sigma f[j] (sum[i]>=sum[j],1<=j<=i).  于是我们用权值树状数组优化即可. #include<c ...

  4. [Usaco2011 Feb]Generic Cow Protests

    Description Farmer John's N (1 <= N <= 100,000) cows are lined up in a row and numbered 1..N. ...

  5. 【BZOJ】3301: [USACO2011 Feb] Cow Line(康托展开)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3301 其实这一题很早就a过了,但是那时候看题解写完也是似懂非懂的.... 听zyf神犇说是康托展开, ...

  6. 【BZOJ】2200: [Usaco2011 Jan]道路和航线

    [题意]给定n个点的图,正权无向边,正负权有向边,保证对有向边(u,v),v无法到达u,求起点出发到达所有点的最短距离. [算法]拓扑排序+dijkstra [题解]因为有负权边,直接对原图进行spf ...

  7. 【BZOJ】3052: [wc2013]糖果公园

    http://www.lydsy.com/JudgeOnline/problem.php?id=3052 题意:n个带颜色的点(m种),q次询问,每次询问x到y的路径上sum{w[次数]*v[颜色]} ...

  8. 【BZOJ】3319: 黑白树

    http://www.lydsy.com/JudgeOnline/problem.php?id=3319 题意:给一棵n节点的树(n<=1e6),m个操作(m<=1e6),每次操作有两种: ...

  9. 【BZOJ】3319: 黑白树(并查集+特殊的技巧/-树链剖分+线段树)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3319 以为是模板题就复习了下hld............................. 然后n ...

随机推荐

  1. Ubuntu12.04卡死的解决方案

    刚开始安装的时候用着还行,不过后来发现用了一会总是会出现卡死的状况 后来看了下ubuntu12.04的内核是3.2,后来把内核升级到3.5发现这种情况不会出现了. 查看内核以及升级内核 uname - ...

  2. 通过JAVA代码获取手机的一些基本信息(本机号码,SDK版本,系统版本,手机型号)

    代码如下: package com.zzw.getPhoneInfos; import android.app.Activity; import android.content.Context; im ...

  3. GetProperties(BindingFlags)说明

    Instance|Public:获取公共的的实例属性(非静态的) Instance|NonPublic:获取非公共的的实例属性(非静态的).(private/protect/internal) Sta ...

  4. 访问svc 文件,编译器错误消息: CS0016,未能写入输出文件

    编译错误              说明: 在编译向该请求提供服务所需资源的过程中出现错误.请检查下列特定错误详细信息并适当地修改源代码.             编译器错误消息: CS0016: 未 ...

  5. Linux平台下:块设备、裸设备、ASMlib、Udev相关关系

    对磁盘设备(裸分区)的访问方式分为两种:1.字符方式访问(裸设备):2.块方式访问 Solaris平台 : 在Solaris平台下,系统同时提供对磁盘设备的字符.块方式访问.每个磁盘有两个设备文件名: ...

  6. JavaWeb之Servlet:Cookie 和 Session

    会话 现实生活中我们会用手机跟对方对话,拿起手机,拨号,然后对面接听,跟着互相通话,最后会话结束. 这个过程也可以用我们的B/S模式来描述: 打开浏览器—>输入地址->发出请求->服 ...

  7. Cygwin下软件安装 - apt-cyg

    安装了cygwin,但不能像centos上装yum,装东西很不方便.找了下可以用apt-cyg来安装软件. 1.下载apt-cyg $ wget raw.github.com/transcode-op ...

  8. 创建自己的oracle解释计划

    1.解释计划 当使用explain plan来为一个查询生成预期的执行计划时,输出将包括一下几种: SQL访问的每一张表: 访问每张表的方法: 每一个需要联结的数据源所使用的联结方法: 按次序列出的所 ...

  9. Table ‘performance_schema.session_variables’ doesn’t exist

    运行mysql时,提示Table ‘performance_schema.session_variables’ doesn’t exist 解决的方法是: 第一步:在管理员命令中输入: mysql_u ...

  10. 2015 年开源前端框架盘点 TOP 20

    1.名称:Bootstrap 类别/语言:HTML.CSS.JavaScript 创建者: Twitter 人气:在Github上有91007 stars 描述:主流框架中毋庸置疑的老大,Bootst ...