转:The Knuth-Morris-Pratt Algorithm in my own words
The Knuth-Morris-Pratt Algorithm in my own words
For the past few days, I’ve been reading various explanations of the Knuth-Morris-Pratt string searching algorithms. For some reason, none of the explanations were doing it for me. I kept banging my head against a brick wall once I started reading “the prefix of the suffix of the prefix of the…”.
Finally, after reading the same paragraph of CLRS over and over for about 30 minutes, I decided to sit down, do a bunch of examples, and diagram them out. I now understand the algorithm, and can explain it. For those who think like me, here it is in my own words. As a side note, I’m not going to explain why it’s more efficient than na”ive string matching; that’s explained perfectly well in a multitude of places. I’m going to explain exactly how it works, as my brain understands it.
The Partial Match Table
The key to KMP, of course, is the partial match table. The main obstacle between me and understanding KMP was the fact that I didn’t quite fully grasp what the values in the partial match table really meant. I will now try to explain them in the simplest words possible.
Here’s the partial match table for the pattern “abababca”:
1 |
|
If I have an eight-character pattern (let’s say “abababca” for the duration of this example), my partial match table will have eight cells. If I’m looking at the eighth and last cell in the table, I’m interested in the entire pattern (“abababca”). If I’m looking at the seventh cell in the table, I’m only interested in the first seven characters in the pattern (“abababc”); the eighth one (“a”) is irrelevant, and can go fall off a building or something. If I’m looking at the sixth cell of the in the table… you get the idea. Notice that I haven’t talked about what each cell means yet, but just what it’s referring to.
Now, in order to talk about the meaning, we need to know about proper prefixes and proper suffixes.
Proper prefix: All the characters in a string, with one or more cut off the end. “S”, “Sn”, “Sna”, and “Snap” are all the proper prefixes of “Snape”.
Proper suffix: All the characters in a string, with one or more cut off the beginning. “agrid”, “grid”, “rid”, “id”, and “d” are all proper suffixes of “Hagrid”.
With this in mind, I can now give the one-sentence meaning of the values in the partial match table:
The length of the longest proper prefix in the (sub)pattern that matches a proper suffix in the same (sub)pattern.
Let’s examine what I mean by that. Say we’re looking in the third cell. As you’ll remember from above, this means we’re only interested in the first three characters (“aba”). In “aba”, there are two proper prefixes (“a” and “ab”) and two proper suffixes (“a” and “ba”). The proper prefix “ab” does not match either of the two proper suffixes. However, the proper prefix “a” matches the proper suffix “a”. Thus, the length of the longest proper prefix that matches a proper suffix, in this case, is 1.
Let’s try it for cell four. Here, we’re interested in the first four characters (“abab”). We have three proper prefixes (“a”, “ab”, and “aba”) and three proper suffixes (“b”, “ab”, and “bab”). This time, “ab” is in both, and is two characters long, so cell four gets value 2.
Just because it’s an interesting example, let’s also try it for cell five, which concerns “ababa”. We have four proper prefixes (“a”, “ab”, “aba”, and “abab”) and four proper suffixes (“a”, “ba”, “aba”, and “baba”). Now, we have two matches: “a” and “aba” are both proper prefixes and proper suffixes. Since “aba” is longer than “a”, it wins, and cell five gets value 3.
Let’s skip ahead to cell seven (the second-to-last cell), which is concerned with the pattern “abababc”. Even without enumerating all the proper prefixes and suffixes, it should be obvious that there aren’t going to be any matches; all the suffixes will end with the letter “c”, and none of the prefixes will. Since there are no matches, cell seven gets 0.
Finally, let’s look at cell eight, which is concerned with the entire pattern (“abababca”). Since they both start and end with “a”, we know the value will be at least 1. However, that’s where it ends; at lengths two and up, all the suffixes contain a c, while only the last prefix (“abababc”) does. This seven-character prefix does not match the seven-character suffix (“bababca”), so cell eight gets 1.
How to use the Partial Match Table
We can use the values in the partial match table to skip ahead (rather than redoing unnecessary old comparisons) when we find partial matches. The formula works like this:
If a partial match of length partial_match_length is found and table[partial_match_length] > 1
, we may skip ahead partial_match_length - table[partial_match_length - 1]
characters.
Let’s say we’re matching the pattern “abababca” against the text “bacbababaabcbab”. Here’s our partial match table again for easy reference:
1 |
|
The first time we get a partial match is here:
1 |
|
This is a partial_match_length of 1. The value at table[partial_match_length - 1]
(or table[0]
) is 0, so we don’t get to skip ahead any. The next partial match we get is here:
1 |
|
This is a partial_match_length of 5. The value at table[partial_match_length - 1]
(or table[4]
) is 3. That means we get to skip ahead partial_match_length - table[partial_match_length - 1]
(or 5 - table[4]
or 5 - 3
or 2
) characters:
1 |
|
This is a partial_match_length of 3. The value at table[partial_match_length - 1]
(or table[2]
) is 1. That means we get to skip ahead partial_match_length - table[partial_match_length - 1]
(or 3 - table[2]
or 3 - 1
or 2
) characters:
1 |
|
At this point, our pattern is longer than the remaining characters in the text, so we know there’s no match.
Conclusion
So there you have it. Like I promised before, it’s no exhaustive explanation or formal proof of KMP; it’s a walk through my brain, with the parts I found confusing spelled out in extreme detail. If you have any questions or notice something I messed up, please leave a comment; maybe we’ll all learn something.
Posted by Jake Boxer Dec 13th, 2009
转:The Knuth-Morris-Pratt Algorithm in my own words的更多相关文章
- 我所理解的 KMP(Knuth–Morris–Pratt) 算法
假设要在 haystack 中匹配 needle . 要理解 KMP 先需要理解两个概念 proper prefix 和 proper suffix,由于找到没有合适的翻译,暂时分别称真实前缀 和 真 ...
- 字符串匹配算法--KMP字符串搜索(Knuth–Morris–Pratt string-searching)C语言实现与讲解
一.前言 在计算机科学中,Knuth-Morris-Pratt字符串查找算法(简称为KMP算法)可在一个主文本字符串S内查找一个词W的出现位置.此算法通过运用对这个词在不匹配时本身就包含足够的信息 ...
- 笔试算法题(52):简介 - KMP算法(D.E. Knuth, J.H. Morris, V.R. Pratt Algorithm)
议题:KMP算法(D.E. Knuth, J.H. Morris, V.R. Pratt Algorithm) 分析: KMP算法用于在一个主串中找出特定的字符或者模式串.现在假设主串为长度n的数组T ...
- Aho - Corasick string matching algorithm
Aho - Corasick string matching algorithm 俗称:多模式匹配算法,它是对 Knuth - Morris - pratt algorithm (单模式匹配算法) 形 ...
- GO语言的开源库
Indexes and search engines These sites provide indexes and search engines for Go packages: godoc.org ...
- Go语言(golang)开源项目大全
转http://www.open-open.com/lib/view/open1396063913278.html内容目录Astronomy构建工具缓存云计算命令行选项解析器命令行工具压缩配置文件解析 ...
- 一个字符串搜索的Aho-Corasick算法
Aho和Corasick对KMP算法(Knuth–Morris–Pratt algorithm)进行了改进,Aho-Corasick算法(Aho-Corasick algorithm)利用构建树,总时 ...
- [转]Go语言(golang)开源项目大全
内容目录 Astronomy 构建工具 缓存 云计算 命令行选项解析器 命令行工具 压缩 配置文件解析器 控制台用户界面 加密 数据处理 数据结构 数据库和存储 开发工具 分布式/网格计算 文档 编辑 ...
- go语言项目汇总
Horst Rutter edited this page 7 days ago · 529 revisions Indexes and search engines These sites prov ...
- Golang优秀开源项目汇总, 10大流行Go语言开源项目, golang 开源项目全集(golang/go/wiki/Projects), GitHub上优秀的Go开源项目
Golang优秀开源项目汇总(持续更新...)我把这个汇总放在github上了, 后面更新也会在github上更新. https://github.com/hackstoic/golang-open- ...
随机推荐
- Unity-Animato深入系列---FloatValue阻尼
回到 Animator深入系列总目录 Animator的SetFloat接口可以设置阻尼,并且4种类型变量只有float是支持阻尼的. public void SetFloat(int id, flo ...
- Python学习笔记-Day3-python函数
1.为什么要用函数? 提高代码重复利用率,减少代码冗余.封装模块化代码,便于调用 2.函数声明定义(注意:函数先声明后调用) 注意:函数的reture循环中的exit功能一样(函数不执行,终止) 函数 ...
- centos 6.5源码编译安装subversion 1.8.10
一.简介 CentOS 6.5的yum源可以安装的SVN客户端版本太低了,1.6.11,所以需要升级到1.8.10,而官网有没有找到1.8.10的安装包,只能选择源码编译安装. 二.安装步骤 参考官网 ...
- 使用Jvisualvm监控JVM的内存、CPU、线程
最近做性能测试发现很多性能问题,面对一些开发小白的数据结构思想,真想喊一声:放开那个代码,让我来!冲动. 面对WEB站点开发,性能测试是经常要做的,下面一种介绍如何结合性能测试工具,更好的监控WEB服 ...
- POI 简单合并单元格
public class MergedCells { /** 测试使用的POI版本是3.1 * @param args */ public static void main(String[] args ...
- Android Context完全解析
Context类型 我们知道,Android应用都是使用Java语言来编写的,那么大家可以思考一下,一个Android程序和一个Java程序,他们最大的区别在哪里?划分界限又是什么呢?其实简单点分析, ...
- zookeeper系列之九—zookeeper数据模型
http://nileader.blog.51cto.com/1381108/946788 本文主要讲述了Zookeeper的数据模型,包括Zookeeper的数据视图,节点的层次结构以及节点类型等基 ...
- C堆栈
C堆栈实现的表达式求值 //Luangeng #include<stdio.h> #include<conio.h> #include<windows.h> #de ...
- iOS面试和招聘
1, <招聘一个靠谱的iOS>面试题参考答案(上) 2, 招聘一个靠谱的 iOS
- SqlSever基础 len函数 返回一个字符串的长度
镇场诗:---大梦谁觉,水月中建博客.百千磨难,才知世事无常.---今持佛语,技术无量愿学.愿尽所学,铸一良心博客.------------------------------------------ ...