Hi, I'm back.

This is a realy classic DP problem to code.

1. You have to be crystal clear about what you are going to solve.
2. Apparently there are 2 DP sections
3. Think carefully about recurrence relations
5. Details: take care of indices boundaries - it costed me 1hr to find an indexing bug!
6. Again: think crystal clear before you code!

And, #2593 is exactly the same.

Here is my AC code:

 #include <stdio.h>

 #define MAX_INX 50010
#define Max(a,b) (a)>(b)?(a):(b) int max_sum2(int *pData, int cnt)
{
// DP: Max sum of sub-sequence: dp[i] = MAX(num[i], dp[i-1] + num[i]) // Left -> Right
int lt[MAX_INX] = { };
lt[] = pData[];
for (int i = ; i < cnt; i ++)
{
lt[i] = Max(pData[i], lt[i - ] + pData[i]);
} // Right -> Left
int rt[MAX_INX] = { };
int rtm[MAX_INX] = { };
rt[cnt-] = pData[cnt-];
for (int i = cnt-; i >= ; i--)
{
rt[i] = Max(pData[i], rt[i + ] + pData[i]);
}
rtm[cnt-] = rt[cnt-];
for (int i = cnt-; i >=; i--)
{
rtm[i] = Max(rtm[i+], rt[i]);
} // O(n) to find real max
int ret = -;
for (int i = ; i < cnt - ; i ++)
{
ret = Max(ret, lt[i] + rtm[i+]);
} return ret;
} int main()
{
int nTotal = ;
scanf("%d", &nTotal); while (nTotal--)
{
int num[MAX_INX] = { }; // Get Input
int nCnt = ; scanf("%d", &nCnt);
for (int i = ; i < nCnt; i ++)
{
scanf("%d", num + i);
} printf("%d\n", max_sum2(num, nCnt));
} return ;
}

POJ #2479 - Maximum sum的更多相关文章

  1. POJ 2479 Maximum sum 解题报告

    Maximum sum Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 40596   Accepted: 12663 Des ...

  2. (线性dp 最大连续和)POJ 2479 Maximum sum

    Maximum sum Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 44459   Accepted: 13794 Des ...

  3. POJ 2479 Maximum sum(双向DP)

    Maximum sum Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 36100   Accepted: 11213 Des ...

  4. poj 2479 Maximum sum (最大字段和的变形)

    题目链接:http://poj.org/problem?id=2479 #include<cstdio> #include<cstring> #include<iostr ...

  5. POJ 2479 Maximum sum POJ 2593 Max Sequence

    d(A) = max{sum(a[s1]..a[t1]) + sum(a[s2]..a[t2]) | 1<=s1<=t1<s2<=t2<=n} 即求两个子序列和的和的最大 ...

  6. [poj 2479] Maximum sum -- 转载

    转自 CSND 想看更多的解题报告: http://blog.csdn.net/wangjian8006/article/details/7870410                         ...

  7. poj 2479 Maximum sum(递推)

     题意:给定n个数,求两段连续不重叠子段的最大和. 思路非常easy.把原串划为两段.求两段的连续最大子串和之和,这里要先预处理一下,用lmax数组表示1到i的最大连续子串和,用rmax数组表示n ...

  8. poj----Maximum sum(poj 2479)

    Maximum sum Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 30704   Accepted: 9408 Desc ...

  9. POJ2479 Maximum sum[DP|最大子段和]

    Maximum sum Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 39599   Accepted: 12370 Des ...

随机推荐

  1. Iptables 规则 一些简单实例和详细介绍

    设定规则 iptables -p INPUT DROP iptables -p OUTPUT ACCEPT iptables -p FORWARD DROP 1.防止外网用内网IP欺骗 iptable ...

  2. win7建立无线wifi热点的几个常见的问题

    命令行开启WiFi方法: 开启WiFi.bat netsh wlan set hostednetwork mode=allow netsh wlan set hostednetwork ssid=ss ...

  3. 递归神经网络(RNN)简介(转载)

    在此之前,我们已经学习了前馈网络的两种结构--多层感知器和卷积神经网络,这两种结构有一个特点,就是假设输入是一个独立的没有上下文联系的单位,比如输入是一张图片,网络识别是狗还是猫.但是对于一些有明显的 ...

  4. 104. Maximum Depth of Binary Tree

    Given a binary tree, find its maximum depth. The maximum depth is the number of nodes along the long ...

  5. 用Python对excel文件的简单操作

    #-*-coding:utf8-*- import xlrd #代开excel文件读取数据 data = xlrd.open_workbook("C:\\Users\\hyl\\Deskto ...

  6. 2015GitWebRTC编译实录7

    2015.07.20 libvoiceengine 编译通过去除了mock测试代码,mock是用来进行测试的,意义不大.另外会报一个常量错误,需要定义WEBRTC_MAC宏,只定义WEBRTC_IOS ...

  7. @Transactional注解*

    类或者方法加@Transactional注解 表示该类里面的所有方法或者这个方法的事务由spring处理,来保证事务的原子性,不知道这样说你能不能理解,即是方法里面对数据库操作,如果有一个方法操作失败 ...

  8. leetcode 103 Binary Tree Zigzag Level Order Traversal ----- java

    Given a binary tree, return the zigzag level order traversal of its nodes' values. (ie, from left to ...

  9. POJ-3162 Walking Race (求树上两点之间最大距离)

    题目大意:给一棵树,对于所有的点,找出距它最远点的距离,然后将这些距离排成一列,找出最长的一个区间满足:其中的最大值减去最小值不大于m. 题目分析:两次dfs找出距每个节点的最远距离,然后可以通过维护 ...

  10. hdu4725 拆点+最短路

    题意:有 n 个点,每个点有它所在的层数,最多有 n 层,相邻两层之间的点可以互相到达,消耗 c (但同一层并不能直接到达),然后还有一些额外的路径,可以在两点间互相到达,并且消耗一定费用.问 1 点 ...