XJTUOJ13 (数论+FFT)
http://oj.xjtuacm.com/problem/13/
题意:wmq如今开始学习乘法了!他为了训练自己的乘法计算能力,写出了n个整数,
并且对每两个数a,b都求出了它们的乘积a×b。现在他想知道,在求出的n(n-1)/2个乘积中,
除以给定的质数m余数为k(0≤k<m)的有多少个。
对每组数据输出m行,其中第i行为除以m余数为(i-1)的有多少个。
第一行为测试数据的组数。
对于每组测试数据,第一行为2个正整数n,m,2≤n,m≤60000,分别表示整数的个数以及除数。
接下来一行有n个整数,满足0≤ai≤1e9。
保证总输出行数∑m≤3e5。
分析:首先对于输入的a[i],我们肯定先模m一下
然后我们关心的就变成了0~m-1中的数各自有多少个
然后就是处理两个这样的数组“相乘”
和FFT十分类似,但是这里并不是i+j=k,而是i*j=k,那么怎么办呢?
注意到模数是个素数,所以一定有原根x
那么就说明x^1,x^2,...,x^i,...,x^m-1和1,2,3,4,...m-1肯定一一对应
那么我们可以把数字映射成x^i,那么相乘问题就变成了指数的相加
就可以用FFT做了
至于0的情况,特判就ok了
XJTUOJ13 (数论+FFT)的更多相关文章
- [Luogu P4173]残缺的字符串 ( 数论 FFT)
题面 传送门:洛咕 Solution 这题我写得脑壳疼,我好菜啊 好吧,我们来说正题. 这题.....emmmmmmm 显然KMP类的字符串神仙算法在这里没法用了. 那咋搞啊(或者说这题和数学有半毛钱 ...
- [Luogu P3338] [ZJOI2014]力 (数论 FFT 卷积)
题面 传送门: 洛咕 BZOJ Solution 写到脑壳疼,我好菜啊 我们来颓柿子吧 \(F_j=\sum_{i<j}\frac{q_i*q_j}{(i-j)^2}-\sum_{i>j} ...
- 再写FFT模板
没什么好说的,今天又考了FFT(虽然不用FFT也能过)但是确实有忘了怎么写FFT了,于是乎只有重新写一遍FFT模板练一下手了.第一部分普通FFT,第二部分数论FFT,记一下模数2^23*7*17+1 ...
- GDKOI2018游记 and 总结
前言 前年NOIP普及组考炸了,没考进一等奖,导致去年只能参加NOIP普及组. 去年NOIP普及组考炸了,幸好进了一等奖. 今年的GDKOI名额是难得的,这是我第一次参加Day>=2的比赛. 第 ...
- 快速傅里叶变换FFT& 数论变换NTT
相关知识 时间域上的函数f(t)经过傅里叶变换(Fourier Transform)变成频率域上的F(w),也就是用一些不同频率正弦曲线的加 权叠加得到时间域上的信号. \[ F(\omega)=\m ...
- 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/常用套路【入门】
原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/ ...
- 从傅里叶变换(FFT)到数论变换(NTT)
FFT可以用来计算多项式乘法,但是复数的运算中含有大量的浮点数,精度较低.对于只有整数参与运算的多项式,有时,\(\text{NTT(Number-Theoretic Transform)}\)会是更 ...
- Algorithm: 多项式乘法 Polynomial Multiplication: 快速傅里叶变换 FFT / 快速数论变换 NTT
Intro: 本篇博客将会从朴素乘法讲起,经过分治乘法,到达FFT和NTT 旨在能够让读者(也让自己)充分理解其思想 模板题入口:洛谷 P3803 [模板]多项式乘法(FFT) 朴素乘法 约定:两个多 ...
- 模板 - 数学 - 快速傅里叶变换/快速数论变换(FFT/NTT)
先看看. 通常模数常见的有998244353,1004535809,469762049,这几个的原根都是3.所求的项数还不能超过2的23次方(因为998244353的分解). 感觉没啥用. #incl ...
随机推荐
- 微软2017年预科生计划在线编程笔试 A Legendary Items
思路: 获得第i(i = 0, 1, ..., n - 1)件物品的概率仅由公式p / (1 << i)决定,所以获得这i件物品之间是相互独立的.迭代计算获得所有i件物品的期望再求和即可. ...
- 前端--1、HTML基础
web服务 处于应用层的http协议负责的数据传输与解析.位于socket上层,用socket传输http数据时需要在消息开头处声明是http协议/相应http版本 状态码 状态码含义 \r\n\r\ ...
- pandas之groupby分组与pivot_table透视表
zhuanzi: https://blog.csdn.net/qq_33689414/article/details/78973267 pandas之groupby分组与pivot_table透视表 ...
- git---安装及配置
git官网:https://git-scm.com 安装: 官网下载->一路Next->安装完成 配置git: 1.win+r进入windows命令行 2.注册: git config - ...
- [备忘]Notification的实用
Intent resultIntent = null; if (!TextUtils.isEmpty(tid)){ resultIntent = new Intent("com.shijie ...
- CentOS 7 挂载ntfs磁盘格式的U盘
因为CentOS 默认不识别NTFS的磁盘格式,所以我们要借助另外一个软件来挂载,那就是ntfs-3g了 自带的yum源没有这个软件,要用第三方的软件源,这里我用的是阿里的epel. 1. 切换到系统 ...
- 迅为iMX6开发板支持单核,双核,四核处理器,为客户产品选择提供灵活性
本文转自迅为:http://topeetboard.com 店铺:https://arm-board.taobao.com 处理器:Freescale Cortex-A9 四核 i.MX6Q 主频 1 ...
- CSS3 动画-- 鼠标移上去,div 会旋转、放大、移动
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- vue全选和取消全选
代码: <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8 ...
- java.lang.NoClassDefFoundError: org.springframework.beans.FatalBeanException
在进行Spring和Hibernate整合的时候遇到了这个问题, 问题描述如下 问题原因? Spring的Bean的XML配置文件存在错误 解决方法: 正确的配置XML文件,例如下面的代码 < ...