http://oj.xjtuacm.com/problem/13/

题意:wmq如今开始学习乘法了!他为了训练自己的乘法计算能力,写出了n个整数,

   并且对每两个数a,b都求出了它们的乘积a×b。现在他想知道,在求出的n(n-1)/2个乘积中,

   除以给定的质数m余数为k(0≤k<m)的有多少个。

   对每组数据输出m行,其中第i行为除以m余数为(i-1)的有多少个。

   

   第一行为测试数据的组数。

   对于每组测试数据,第一行为2个正整数n,m,2≤n,m≤60000,分别表示整数的个数以及除数。

   接下来一行有n个整数,满足0≤ai≤1e9。

   保证总输出行数∑m≤3e5。

分析:首先对于输入的a[i],我们肯定先模m一下

   然后我们关心的就变成了0~m-1中的数各自有多少个

   然后就是处理两个这样的数组“相乘”

   和FFT十分类似,但是这里并不是i+j=k,而是i*j=k,那么怎么办呢?

   注意到模数是个素数,所以一定有原根x

   那么就说明x^1,x^2,...,x^i,...,x^m-1和1,2,3,4,...m-1肯定一一对应

   那么我们可以把数字映射成x^i,那么相乘问题就变成了指数的相加

   就可以用FFT做了

   至于0的情况,特判就ok了

XJTUOJ13 (数论+FFT)的更多相关文章

  1. [Luogu P4173]残缺的字符串 ( 数论 FFT)

    题面 传送门:洛咕 Solution 这题我写得脑壳疼,我好菜啊 好吧,我们来说正题. 这题.....emmmmmmm 显然KMP类的字符串神仙算法在这里没法用了. 那咋搞啊(或者说这题和数学有半毛钱 ...

  2. [Luogu P3338] [ZJOI2014]力 (数论 FFT 卷积)

    题面 传送门: 洛咕 BZOJ Solution 写到脑壳疼,我好菜啊 我们来颓柿子吧 \(F_j=\sum_{i<j}\frac{q_i*q_j}{(i-j)^2}-\sum_{i>j} ...

  3. 再写FFT模板

    没什么好说的,今天又考了FFT(虽然不用FFT也能过)但是确实有忘了怎么写FFT了,于是乎只有重新写一遍FFT模板练一下手了.第一部分普通FFT,第二部分数论FFT,记一下模数2^23*7*17+1 ...

  4. GDKOI2018游记 and 总结

    前言 前年NOIP普及组考炸了,没考进一等奖,导致去年只能参加NOIP普及组. 去年NOIP普及组考炸了,幸好进了一等奖. 今年的GDKOI名额是难得的,这是我第一次参加Day>=2的比赛. 第 ...

  5. 快速傅里叶变换FFT& 数论变换NTT

    相关知识 时间域上的函数f(t)经过傅里叶变换(Fourier Transform)变成频率域上的F(w),也就是用一些不同频率正弦曲线的加 权叠加得到时间域上的信号. \[ F(\omega)=\m ...

  6. 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/常用套路【入门】

    原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/ ...

  7. 从傅里叶变换(FFT)到数论变换(NTT)

    FFT可以用来计算多项式乘法,但是复数的运算中含有大量的浮点数,精度较低.对于只有整数参与运算的多项式,有时,\(\text{NTT(Number-Theoretic Transform)}\)会是更 ...

  8. Algorithm: 多项式乘法 Polynomial Multiplication: 快速傅里叶变换 FFT / 快速数论变换 NTT

    Intro: 本篇博客将会从朴素乘法讲起,经过分治乘法,到达FFT和NTT 旨在能够让读者(也让自己)充分理解其思想 模板题入口:洛谷 P3803 [模板]多项式乘法(FFT) 朴素乘法 约定:两个多 ...

  9. 模板 - 数学 - 快速傅里叶变换/快速数论变换(FFT/NTT)

    先看看. 通常模数常见的有998244353,1004535809,469762049,这几个的原根都是3.所求的项数还不能超过2的23次方(因为998244353的分解). 感觉没啥用. #incl ...

随机推荐

  1. dotnet cors 跨域问题

    研究了一整子的.net core框架,感觉挺好用的,可以用在实际项目中,前端avalon框架也在研究: 问题:跨域,相比原来的跨域解决方案,还是有不小的变化的,原来的.net api 只需要在WebA ...

  2. vue-router之 beforeRouteEnter

    beforeRouteEnter在每次路由切换都执行 ,而项目优化后,切换路由mounted只在最开始执行一次 beforeRouteEnter的具体用法可参考官方文档 https://cn.vuej ...

  3. 21全志r58m平台的framework在使用过程中会莫名的崩溃掉

    21全志r58m平台的framework在使用过程中会莫名的崩溃掉 2018/10/25 16:20 版本:V1.0 开发板:SC5806 1.系统编译: rootroot@cm88:/home/ww ...

  4. Unity中,保存在OnInspectorGUI中改变的值

    using UnityEngine; using System.Collections; using UnityEditor; [CustomEditor( typeof( MessageLog ) ...

  5. 在Bootstrap中得模态框(modal)中下拉不能显示得问题

    $.fn.modal.Constructor.prototype.enforceFocus = function () { $("#insertModal").on("s ...

  6. git ---查看工作状态和历史提交

    1.git查看状态 -git status 2.版权声明 版权声明:新建一个   LICENSE.txt   文件 开源协议:MIT   //开源许可里面的最宽松的一个协议,别人可以随便用你的代码,但 ...

  7. 请大家帮我找一找bug —— 一个MySQL解析程序(JAVA实现)

    周末两天我写了一个MySQLParser.写这个东西的目的是:公司的一个项目中需要对数据打版本号(每个表的每条记录要有一个版本号字段,这个字段需要由框架自动打上去,而不是由程序员来做). 所以,我写的 ...

  8. Linux下支持mysql支持远程ip访问

    示例代码: use mysql; SELECT `Host`,`User` FROM user; UPDATE user SET `Host` = '%' WHERE `User` = 'use**' ...

  9. UVALive 4128 Steam Roller 蒸汽式压路机(最短路,变形) WA中。。。。。

    题意: 给一个由n*m个正方形格子组成的矩形,其中每个格子的边都是可以走的,长度给定,规定:如果在进入该路前需要拐弯,或者走完该路需要拐弯,都是需要付出双倍距离的(每条路最多算2倍).问从起点到终点的 ...

  10. formSelects-v4.js 基于Layui的多选解决方案

    https://hnzzmsf.github.io/example/example_v4.html