n<=300000个点的树,给m<=300000条带权路径(ui,vi,保证vi是ui的祖先)求覆盖整棵树每条边的最小权和。

好题好姿势!直观的看到可以树形DP,f[i]表示把点i包括它爸爸下面那条边都覆盖的最小权,就用经过他爸爸那条边的所有路径,各条路径加上一些子树信息来更新即可。

这样时间炸,那看看怎么优化。实际上我们不是在单纯地用一条路径更新答案,而是这样一个东西:

其中红色那条是题目给的路径,实际上是加上蓝色边连接的点的f[i]来更新边2上端的那个点的答案的。也就是说,一条路径来更新答案,要在这条路径的尾部加上那些点权(1),然后在更新某个点的答案的时候加上这个点下面的这条路径的分叉(2)。而更新一个点的路径,其实都是这个点对应子树的路径。至于子树中那些够不到这个点的路径,只需在扫到头的时候把这条路径的答案变inf即可。

为了实现这个操作,即找到“起点在子树里的所有路径的答案”,我们用dfs序给每个路径的起点(下端点)编号,再dfs求每个点的答案;每次求答案时,先把以该点为起点的新路径赋初值,即该点所有子树的f[j]和,并把终点在该点的路径答案置inf;然后给经过该点的路径加“分叉”;由于dfs序编号好了,能更新这个节点的路径(上面提到的起点在这个子树内的路径)是连续的一个区间,因此用个线段树维护区间min即可。

至于加“分叉”,观察可以发现:假如经过i的某路径来自子树j,那么应该把它答案加上点i其他儿子的f和。所以在加“分叉”时只需要再枚举一次孩子,把孩子子树内所有的路径加上其他孩子的f[j]和即可。

废话少说见代码!

 #include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<algorithm>
//#include<iostream>
using namespace std; int n,m;
#define maxn 300011
struct Edge{int to,next;}edge[maxn*];int first[maxn],start[maxn],end[maxn],le=;
void in(int x,int y,int* first) {edge[le].to=y;edge[le].next=first[x];first[x]=le++;}
void insert(int x,int y,int* first) {in(x,y,first);in(y,x,first);}
int dfn[maxn],Left[maxn],Right[maxn],Time=;
void dfs(int x,int fa)
{
Left[x]=Time+;
for (int i=start[x];i;i=edge[i].next)
{
Edge &e=edge[i];
dfn[e.to]=++Time;
}
for (int i=first[x];i;i=edge[i].next)
{
Edge &e=edge[i];
if (e.to!=fa) dfs(e.to,x);
}
Right[x]=Time;
}
#define LL long long
LL val[maxn];
const LL inf=1e15+;
struct SMT
{
struct Node
{
LL Min;
LL add;
int l,r;
int ls,rs;
}a[maxn*];
int size;
SMT() {size=;}
void build(int &x,int L,int R)
{
x=++size;
a[x].Min=inf;a[x].add=;
a[x].l=L;a[x].r=R;
if (L==R) {a[x].ls=a[x].rs=;}
else
{
const int mid=(L+R)>>;
build(a[x].ls,L,mid);
build(a[x].rs,mid+,R);
}
}
void build() {int x;build(x,,m);}
void up(int x)
{
const int &p=a[x].ls,&q=a[x].rs;
a[x].Min=min(a[p].Min,a[q].Min);
}
void addsingle(int x,LL v)
{
a[x].Min+=v;
a[x].Min=min(inf,a[x].Min);
a[x].add+=v;
}
void down(int x)
{
const int &p=a[x].ls,&q=a[x].rs;
if (a[x].add)
{
addsingle(p,a[x].add);
addsingle(q,a[x].add);
a[x].add=;
}
}
int ql,qr;LL v;
void be(int x)
{
if (a[x].l==a[x].r) {a[x].Min=v;return;}
down(x);
const int mid=(a[x].l+a[x].r)>>;
if (ql<=mid) be(a[x].ls);
if (ql> mid) be(a[x].rs);
up(x);
}
void be(int p,LL v) {ql=qr=p;this->v=v;be();}
void Add(int x)
{
if (ql<=a[x].l && a[x].r<=qr) {addsingle(x,v);return;}
down(x);
const int mid=(a[x].l+a[x].r)>>;
if (ql<=mid) Add(a[x].ls);
if (qr> mid) Add(a[x].rs);
up(x);
}
void Add(int L,int R,LL v) {if (L>R) return;ql=L;qr=R;this->v=v;Add();}
LL query(int x)
{
if (ql<=a[x].l && a[x].r<=qr) return a[x].Min;
down(x);
const int mid=(a[x].l+a[x].r)>>;LL ans=inf;
if (ql<=mid) ans=min(ans,query(a[x].ls));
if (qr> mid) ans=min(ans,query(a[x].rs));
return ans;
}
LL query(int L,int R) {if (L>R) return inf;ql=L;qr=R;return query();}
}t;
LL f[maxn];
void play(int x,int fa)
{
LL tot=;
for (int i=first[x];i;i=edge[i].next)
{
Edge &e=edge[i];if (e.to==fa) continue;
play(e.to,x);
tot=min(inf,f[e.to]+tot);
}
for (int i=start[x];i;i=edge[i].next)
{
Edge &e=edge[i];
t.be(dfn[e.to],tot+val[e.to]);
}
for (int i=end[x];i;i=edge[i].next)
{
Edge &e=edge[i];
t.be(dfn[e.to],inf);
}
if (x==) f[]=tot;
else if (tot<inf)
{
for (int i=first[x];i;i=edge[i].next)
{
Edge &e=edge[i];if (e.to==fa) continue;
t.Add(Left[e.to],Right[e.to],tot-f[e.to]);
}
f[x]=t.query(Left[x],Right[x]);
}
else f[x]=inf;
}
void play()
{
dfs(,);
t.build();
play(,);
}
int x,y;LL v;
int main()
{
scanf("%d%d",&n,&m);
for (int i=;i<n;i++)
{
scanf("%d%d",&x,&y);
insert(x,y,first);
}
for (int i=;i<=m;i++)
{
scanf("%d%d%I64d",&x,&y,&val[i]);
in(x,i,start);
in(y,i,end);
}
play();
printf(f[]>=inf?"-1\n":"%I64d\n",f[]);
return ;
}

还有一种贪心写法哦!

CF671D:Roads in Yusland的更多相关文章

  1. 【CF671D】Roads in Yusland(贪心,左偏树)

    [CF671D]Roads in Yusland(贪心,左偏树) 题面 洛谷 CF 题解 无解的情况随便怎么搞搞提前处理掉. 通过严密(大雾)地推导后,发现问题可以转化成这个问题: 给定一棵树,每条边 ...

  2. 【CF671D】 Roads in Yusland(对偶问题,左偏树)

    传送门 洛谷翻译 CodeForces Solution emmm,先引入一个对偶问题的概念 \(max(c^Tx|Ax \leq b)=min(b^Ty|A^Ty \ge c)\) 考虑这个式子的现 ...

  3. Codeforces 671 D. Roads in Yusland

    题目描述 Mayor of Yusland just won the lottery and decided to spent money on something good for town. Fo ...

  4. [Codeforces671D]Roads in Yusland

    [Codeforces671D]Roads in Yusland Tags:题解 题意 luogu 给定以1为根的一棵树,有\(m\)条直上直下的有代价的链,求选一些链把所有边覆盖的最小代价.若无解输 ...

  5. 【CF617D】Roads in Yusland

    [CF617D]Roads in Yusland 题面 蒯的洛谷的 题解 我们现在已经转化好了题目了,戳这里 那么我们考虑怎么求这个东西,我们先判断一下是否所有的边都能被覆盖,不行的话输出\(-1\) ...

  6. 【CodeForces】671 D. Roads in Yusland

    [题目]D. Roads in Yusland [题意]给定n个点的树,m条从下往上的链,每条链代价ci,求最少代价使得链覆盖所有边.n,m<=3*10^5,ci<=10^9,time=4 ...

  7. codesforces 671D Roads in Yusland

    Mayor of Yusland just won the lottery and decided to spent money on something good for town. For exa ...

  8. CF671D Roads in Yusland

    一道很玄妙的题= = 我们考虑先考虑DP 那么有$f[x]=min(c+\sum f[y])$ $f[x]$表示覆盖x的子树和x->fa[x]的所有边最小代价 我们枚举一条边c覆盖的x-> ...

  9. 题解-Codeforces671D Roads in Yusland

    Problem Codeforces-671D 题意概要:给定一棵 \(n\) 点有根树与 \(m\) 条链,链有费用,保证链端点之间为祖先关系,问至少花费多少费用才能覆盖整棵树(\(n-1\) 条边 ...

随机推荐

  1. hihocoder1718 最长一次上升子序列

    思路: 对于每个i,分别求1~i和i+1~N两部分的最长下降子序列“拼”起来,最终取最大长度即可.学习了如何使用BIT把LIS问题O(N2)算法优化为O(Nlog(N))的算法. https://ww ...

  2. elasticsearch 2.4在head删除数据(使用Delete By Query插件)

    之所以说明是2.4版,是因为不同版本删除的语法不一样(例如跟5.x就不同) 首先安装Delete By Query插件,方式跟安装head插件差不多,安装命令:plugin install delet ...

  3. [Tunny]Git常用命令与入门

    [黄映焜/Tunny,20140709] Git 仓库就是那个.git 目录,其中存放的是我们所提交的文档索引内容,Git 可基于文档索引内容对其所管理的文档进行内容追踪,从而实现文档的版本控制..g ...

  4. PMP项目管理学习笔记(4)——项目整合管理

    六个整合管理过程. 1.制定项目章程 一个新项目要完成的第一件事,就是项目章程的制定.这是授权你开展工作的文档.不过并不总是需要你介入,通常情况下会由赞助人交给你.如果没有项目章程,你就没有权利告诉你 ...

  5. 如何使用SAP CRM Marketing Survey创建一个市场问卷调查

    使用事务码CRM_SURVEY_SUITE进行编辑.选中Activities这个应用类型,点击新建按钮: 双击Survey的根节点,点击编辑按钮维护Suvey的标题: Survey的正文布局类型(La ...

  6. Android(java)学习笔记179:多媒体之加载大图片到内存(Bitmap API)

    1. Bitmap (API使用) android里面的bitmap中,一个像素点需要4个byte去表示,这是因为android表示颜色是" argb ":其中 a 表示是透明度, ...

  7. Comparator.comparing比较排序

    使用外部比较器Comparator进行排序 当我们需要对集合的元素进行排序的时候,可以使用java.util.Comparator 创建一个比较器来进行排序.Comparator接口同样也是一个函数式 ...

  8. 最短路 || POJ 1847 Tram

    POJ 1847 最短路 每个点都有初始指向,问从起点到终点最少要改变多少次点的指向 *初始指向的那条边长度为0,其他的长度为1,表示要改变一次指向,然后最短路 =========高亮!!!===== ...

  9. JS实现两版本号大小比较

    JavaScript实现版本号比对(含字母) 昨天,有一道面试题,要求是这样的: 用你熟悉的编程语言,实现一个比较任意两个软件版本号大小的函数,如1.2.3a与1.2.4b进行比较,后者版本号更大,要 ...

  10. Python3使用PyMySQL操作数据库

    1. 安装PyMySQL pip install PyMySQL 关于PyMySQL的详细内容可以查看官方文档  Github 2. 创建表 在某个数据库内,使用以下指令建表 CREATE TABLE ...