3884: 上帝与集合的正确用法

Time Limit: 5 Sec  Memory Limit: 128 MB
Submit: 4142  Solved: 1907
[Submit][Status][Discuss]

Description

 
根据一些书上的记载,上帝的一次失败的创世经历是这样的:
第一天, 上帝创造了一个世界的基本元素,称做“元”。
第二天, 上帝创造了一个新的元素,称作“α”。“α”被定义为“元”构成的集合。容易发现,一共有两种不同的“α”。
第三天, 上帝又创造了一个新的元素,称作“β”。“β”被定义为“α”构成的集合。容易发现,一共有四种不同的“β”。
第四天, 上帝创造了新的元素“γ”,“γ”被定义为“β”的集合。显然,一共会有16种不同的“γ”。
如果按照这样下去,上帝创造的第四种元素将会有65536种,第五种元素将会有2^65536种。这将会是一个天文数字。
然而,上帝并没有预料到元素种类数的增长是如此的迅速。他想要让世界的元素丰富起来,因此,日复一日,年复一年,他重复地创造着新的元素……
然而不久,当上帝创造出最后一种元素“θ”时,他发现这世界的元素实在是太多了,以致于世界的容量不足,无法承受。因此在这一天,上帝毁灭了世界。
至今,上帝仍记得那次失败的创世经历,现在他想问问你,他最后一次创造的元素“θ”一共有多少种?
上帝觉得这个数字可能过于巨大而无法表示出来,因此你只需要回答这个数对p取模后的值即可。
你可以认为上帝从“α”到“θ”一共创造了10^9次元素,或10^18次,或者干脆∞次。
 
一句话题意:

Input

 
接下来T行,每行一个正整数p,代表你需要取模的值

Output

T行,每行一个正整数,为答案对p取模后的值

Sample Input

3
2
3
6

Sample Output

0
1
4

HINT

对于100%的数据,T<=1000,p<=10^7

欧拉定理 

    (a , p)  互质

拓展欧拉定理(降幂)

 第二个式子不能合并到第三个

定理证明 不会..


解析   由于是2的无限次幂 所以每一层指数肯定大于对应的p   所以直接拓展欧拉定理第三个公式 递归求解phi(phi(phi(...))))  直到等于1  回朔的时候快速幂求解

复杂度 O(T*log(p)*sqtr(p)) 看起来很大 但是实际上上界是很松的,反正过了。据说打表会超时。

#include <bits/stdc++.h>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define all(a) (a).begin(), (a).end()
#define fillchar(a, x) memset(a, x, sizeof(a))
#define huan printf("\n");
using namespace std;
typedef long long ll;
const int maxn=1e5+,maxm=,inf=0x3f3f3f3f;
ll poww(ll n,ll m,ll mod)
{
ll ans = ;
while(m > )
{
if(m & )ans = (ans * n) % mod;
m = m >> ;
n = (n * n) % mod;
}
return ans;
}
ll phi(ll n) //返回euler(n)
{
ll res=n,a=n;
for(ll i=; i*i<=a; i++)
{
if(a%i==)
{
res=res/i*(i-);//先进行除法是为了防止中间数据的溢出 爆int
while(a%i==)
a/=i;
}
}
if(a>)
res=res/a*(a-);
return res;
}
ll dfs(ll p)
{
if(p==)return ;
ll x=phi(p);
return poww(,dfs(x)+x,p);
}
int main()
{
int t,p;
scanf("%d",&t);
while(t--)
{
scanf("%d",&p);
printf("%lld\n",dfs(p));
}
}

BZOJ 3884 拓展欧拉定理的更多相关文章

  1. bzoj 3884 欧拉定理

    求$$2^{2^{2^{2^{…}}}} mod n$$的值,其中n有1e7. 老实说这题挺有趣的,关键是怎么化掉指数,由于是取模意义下的无限个指数,所以使用欧拉定理一定是可以把指数变为不大于$\va ...

  2. BZOJ 5394 [Ynoi2016]炸脖龙 (线段树+拓展欧拉定理)

    题目大意:给你一个序列,需要支持区间修改,以及查询一段区间$a_{i}^{a_{i+1}^{a_{i+2}...}}mod\;p$的值,每次询问的$p$的值不同 对于区间修改,由线段树完成,没什么好说 ...

  3. Luogu4139 上帝与集合的正确用法 拓展欧拉定理

    传送门 题意:求$2^{2^{2^{2^{...}}}} \mod p$的值.$p \leq 10^7$ 最开始想到的是$x \equiv x^2 \mod p$,然后发现不会做... 我们可以想到拓 ...

  4. BZOJ3884: 上帝与集合的正确用法 拓展欧拉定理

    Description   根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...

  5. BZOJ.3884.上帝与集合的正确用法(扩展欧拉定理)

    \(Description\) 给定p, \(Solution\) 欧拉定理:\(若(a,p)=1\),则\(a^b\equiv a^{b\%\varphi(p)}(mod\ p)\). 扩展欧拉定理 ...

  6. BZOJ 3884: 上帝与集合的正确用法 扩展欧拉定理 + 快速幂

    Code: #include<bits/stdc++.h> #define maxn 10000004 #define ll long long using namespace std; ...

  7. BZOJ 3884 欧拉定理 无穷幂取模

    详见PoPoQQQ的博客.. #include <iostream> #include <cstring> #include <cstdio> #include & ...

  8. BZOJ 3884 上帝与集合的正确用法(扩展欧拉定理)

    Description   根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...

  9. [BZOJ 3884][欧拉定理]上帝与集合的正确使用方法

    看看我们机房某畸形写的题解:http://blog.csdn.net/sinat_27410769/article/details/46754209 此题为popoQQQ神犇所出,在此orz #inc ...

随机推荐

  1. 如何正确理解和使用 Activity的4种启动模式

    关于Activity启动模式的文章已经很多,但有的文章写得过于简单,有的则过于注重细节,本文想取一个折中,只关注最重要和最常用的概念,原理和使用方法,便于读者正确应用. Activity的启动模式有4 ...

  2. vue-cli下面的config/index.js注解 webpack.base.conf.js注解

    config/indexjs详解上代码: 'use strict' // Template version: 1.3.1 // see http://vuejs-templates.github.io ...

  3. 51nod 1096 距离之和最小(水题日常)

    基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 X轴上有N个点,求X轴上一点使它到这N个点的距离之和最小,输出这个最小的距离之和.   Input 第1行:点的数量 ...

  4. (转)Spring4.2.5+Hibernate4.3.11+Struts2.3.24整合开发

    http://blog.csdn.net/yerenyuan_pku/article/details/52902851 前面我们已经学会了Spring4.2.5+Hibernate4.3.11+Str ...

  5. sqlserver 数据库主外键关联错误

    话题引入: 在建立主外键关系时,系统提示表"table2"中的列与现有的主键或UNIQUE约束不匹配 原因: 数据库表中只有一个主键,这个主键可以是多个列共同组成.所以table2 ...

  6. H5里div多行显示省略号

    display: -webkit-box; -webkit-box-orient: vertical; -webkit-line-clamp: ; overflow: hidden; -webkit- ...

  7. python基础一 day6 序列操作集合

    列表删除:pop([index])有返回值 remove('元素‘)没有返回值 按元素删,元素是什么,就写什么,是数字就写数字,不要加引号,加引号就变成字符串了,没有就报错. 字典删除:pop( ’键 ...

  8. Java集合(六)--ArrayList、LinkedList和Vector对比

    在前两篇博客,学习了ArrayList和LinkedList的源码,地址在这: Java集合(五)--LinkedList源码解读 Java集合(四)--基于JDK1.8的ArrayList源码解读 ...

  9. HTML基础(三)图像和超链接

    图像 img 元素向网页中嵌入一幅图像. 语法 <img src="" alt="" /> img标签常用属性 src 跳转的url alt 图片不 ...

  10. 使用Auto Layout中的VFL(Visual format language)——代码实现自动布局

    本文将通过简单的UI来说明如何用VFL来实现自动布局.在自动布局的时候避免不了使用代码来加以优化以及根据内容来实现不同的UI. 一:api介绍 1.NSLayoutConstraint API NSL ...