Bellman_ford 算法 Currency Exchange POJ1860
Bellman_ford算法用于寻找正环或者负环!
算法导论:
24.1 The Bellman-Ford algorithm
The Bellman-Ford algorithm solves the single-source shortest-paths problem in the general case in which edge weights may be negative. Given a weighted, directed graph G = (V, E) with source s and weight function w : E → R, the Bellman-Ford algorithm returns a boolean value indicating whether or not there is a negative-weight cycle that is reachable from the source. If there is such a cycle, the algorithm indicates that no solution exists. If there is no such cycle, the algorithm produces the shortest paths and their weights.
The algorithm uses relaxation, progressively decreasing an estimate d[v] on the weight of a shortest path from the source s to each vertex v ∈ V until it achieves the actual shortest-path weight δ(s, v). The algorithm returns TRUE if and only if the graph contains no negative-weight cycles that are reachable from the source.
BELLMAN-FORD(G, w, s)
1 INITIALIZE-SINGLE-SOURCE(G, s)
2 for i ← 1 to |V[G]| - 1
3 do for each edge (u, v) ∈ E[G]
4 do RELAX(u, v, w)
5 for each edge (u, v) ∈ E[G]
6 do if d[v] > d[u] + w(u, v)
7 then return FALSE
8 return TRUE
Figure 24.4 shows the execution of the Bellman-Ford algorithm on a graph with 5 vertices. After initializing the dand π values of all vertices in line 1, the algorithm makes |V| – 1 passes over the edges of the graph. Each pass is one iteration of the for loop of lines 2-4 and consists of relaxing each edge of the graph once. Figures 24.4(b)-(e) show the state of the algorithm after each of the four passes over the edges. After making |V|- 1 passes, lines 5-8 check for a negative-weight cycle and return the appropriate boolean value. (We’ll see a little later why this check works.)
(单击图片可以放大)
Figure 24.4: The execution of the Bellman-Ford algorithm. The source is vertex s. The d values are shown within the vertices, and shaded edges indicate predecessor values: if edge (u, v) is shaded, then π[v] = u. In this particular example, each pass relaxes the edges in the order (t, x), (t, y), (t, z), (x, t), (y, x), (y, z), (z, x), (z, s), (s, t), (s, y). (a) The situation just before the first pass over the edges. (b)-(e) The situation after each successive pass over the edges. The d and π values in part (e) are the final values. The Bellman-Ford algorithm returns TRUE in this example.
The Bellman-Ford algorithm runs in time O(V E), since the initialization in line 1 takes Θ(V) time, each of the |V| – 1 passes over the edges in lines 2-4 takes Θ(E) time, and the for loop of lines 5-7 takes O(E) time.
题目:
For example, if you want to exchange 100 US Dollars into Russian Rubles at the exchange point, where the exchange rate is 29.75, and the commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR.
You surely know that there are N different currencies you can deal with in our city. Let us assign unique integer number from 1 to N to each currency. Then each exchange point can be described with 6 numbers: integer A and B - numbers of currencies it exchanges, and real R AB, C AB, R BA and C BA - exchange rates and commissions when exchanging A to B and B to A respectively.
Nick has some money in currency S and wonders if he can somehow, after some exchange operations, increase his capital. Of course, he wants to have his money in currency S in the end. Help him to answer this difficult question. Nick must always have non-negative sum of money while making his operations.
Input
For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10 -2<=rate<=10 2, 0<=commission<=10 2.
Let us call some sequence of the exchange operations simple if no exchange point is used more than once in this sequence. You may assume that ratio of the numeric values of the sums at the end and at the beginning of any simple sequence of the exchange operations will be less than 10 4.
Output
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<sstream>
#include<algorithm>
#include<queue>
#include<deque>
#include<iomanip>
#include<vector>
#include<cmath>
#include<map>
#include<stack>
#include<set>
#include<fstream>
#include<memory>
#include<list>
#include<string>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
#define MAXN 105
#define N 33
#define MOD 10000007
#define INF 1000000009
const double eps = 1e-;
const double PI = acos(-1.0);
/*
即寻找从给定状态开始有没有正环
*/
struct edge
{
int u, v;
double cost, rate;
edge(int _u,int _v,double _cost,double _rate):u(_u),v(_v),cost(_cost),rate(_rate){}
};
vector<edge> E;
double dis[MAXN];
int n, m, s;
double num;
bool Bellman_ford(int s,double num)
{
memset(dis, , sizeof(dis));
dis[s] = num;
for (int i = ; i < n; i++)
{
bool f = false;//不能松弛
for (int j = ; j < E.size(); j++)
{
int u = E[j].u, v = E[j].v;
double c = E[j].cost, r = E[j].rate;
if (dis[v] < (dis[u] - c)*r)
{
f = true;
dis[v] = (dis[u] - c)*r;
}
}
if (!f) return false;
}
for(int j=;j<E.size();j++)
if (dis[E[j].v] < (dis[E[j].u] - E[j].cost)*E[j].rate)
{
return true;
}
return false;
}
int main()
{
while (scanf("%d%d%d%lf", &n, &m, &s, &num) != EOF)
{
int a, b;
double rab, cab, rba, cba;
for (int i = ; i < m; i++)
{
scanf("%d%d%lf%lf%lf%lf", &a, &b, &rab, &cab, &rba, &cba);
E.push_back(edge(a, b, cab, rab));
E.push_back(edge(b, a, cba, rba));
}
if (Bellman_ford(s, num))
printf("YES\n");
else
printf("NO\n");
}
}
Bellman_ford 算法 Currency Exchange POJ1860的更多相关文章
- Currency Exchange POJ1860
Description Several currency exchange points are working in our city. Let us suppose that each point ...
- POJ1860——Currency Exchange(BellmanFord算法求最短路)
Currency Exchange DescriptionSeveral currency exchange points are working in our city. Let us suppos ...
- POJ-1860 Currency Exchange( Bellman_Ford, 正环 )
题目链接:http://poj.org/problem?id=1860 Description Several currency exchange points are working in our ...
- POJ 1860 Currency Exchange(如何Bellman-Ford算法判断图中是否存在正环)
题目链接: https://cn.vjudge.net/problem/POJ-1860 Several currency exchange points are working in our cit ...
- poj1860 bellman—ford队列优化 Currency Exchange
Currency Exchange Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 22123 Accepted: 799 ...
- POJ 1860 Currency Exchange【bellman_ford判断是否有正环——基础入门】
链接: http://poj.org/problem?id=1860 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22010#probl ...
- POJ1860 Currency Exchange(bellman-ford)
链接:http://poj.org/problem?id=1860 Currency Exchange Description Several currency exchange points are ...
- 最短路(Bellman_Ford) POJ 1860 Currency Exchange
题目传送门 /* 最短路(Bellman_Ford):求负环的思路,但是反过来用,即找正环 详细解释:http://blog.csdn.net/lyy289065406/article/details ...
- POJ1860 Currency Exchange【最短路-判断环】
Several currency exchange points are working in our city. Let us suppose that each point specializes ...
随机推荐
- [SDOI2010]外星千足虫(高斯消元)
高斯消元裸题... 方法一:暴力,O(2^n)20分 方法二:直接Gauss,加点玄学技巧搞得好的话70分 方法三:使用bitset优化,复杂度:$O(\frac{n^3}{ω})$ 不会的同学看一下 ...
- python 操作数据库时遇到的错误
pymysql.err.ProgrammingError: (1064, "You have an error in your SQL syntax; ch 之前的写法是从文件里 ...
- spring-redis-data的一个坑
事故原因: 运维报告redis内存直线上升,然后查询发现都是setrange操作,review代码,没法发现setrange操作 代码如下: redisTemplate.opsForValue().s ...
- Roslyn导致发布网站时报错:编译失败
最近新升级了Visual Studio 2017,创建的Web项目Bin目录中多了一个叫roslyn的文件夹,该文件夹导致网站在某些服务器上发布出错 从网上搜索了一下,Roslyn是新出的动态编译工具 ...
- JavaScript Json与Map互转以及Map对象的取值方式
Json格式(Json字符串) : var json='{"name": "lily","age":"15"}' Map ...
- 重构27-Remove God Classes(去掉神类)
在传统的代码库中,我们常常会看到一些违反了SRP原则的类.这些类通常以Utils或Manager结尾,有时也没有这么明显的特征而仅仅是普通的包含多个功能的类.这种God类还有一个特征,使用语句或注释将 ...
- interface与抽象类
抽象类: 定义:在 class 前加了 abstract 关键字且存在抽象方法(在类方法 function 关键字前加了 abstract 关键字)的类 抽象类不能被实例化. 抽象类被继承之后,子类必 ...
- apache自带的ab压力测试工具
httpd-2.4.27-Win64-VC15 链接: https://pan.baidu.com/s/1027MtVwbq1zjUgF7P7Rrkw 密码: ne6a 下载解压后doc窗口cd .. ...
- 【笔记JS/HTML/CSS】用div实现个性化button,背景半透明
html中的button默认样式..不太能看,如果调一调背景色和字体的话也挺适合简洁的页面设计 于是决定配合JS,用html中的div完成button 最终结果图: html代码:(first_pas ...
- docker 1-->docker swarm 转载
实践中会发现,生产环境中使用单个 Docker 节点是远远不够的,搭建 Docker 集群势在必行.然而,面对 Kubernetes, Mesos 以及 Swarm 等众多容器集群系统,我们该如何选择 ...