luogu2485 [SDOI2011]计算器 poj3243 Clever Y BSGS算法
BSGS 算法,即 Baby Step,Giant Step 算法、拔山盖世算法。
计算 \(a^x \equiv b \pmod p\)。
\(p\)为质数时
特判掉 \(a,p\) 不互质的情况。
由于费马小定理 \(x^{p-1} \equiv 1 \pmod p\) 当 \(p\) 为质数,则要是暴力的话只需要枚举到 \(p-1\) 即可。
假设 \(x=it-j\),其中 \(t= \lceil \sqrt p \rceil,j \in [0,t]\),方程变为 \(a^{it-j} \equiv b \pmod p\),即 \(a^{it} \equiv ba^j \pmod p\)。我们惊喜地发现,左右最多也就 \(t\) 个左右种可能的取值(这就是 \(t\) 为什么取那个值的原因),那我们枚举 \(j\),把 \(ba^j\) 所对应的 \(j\) 都存起来,然后枚举 \(i\) 找有无对应即可。
保存的话用手写 hash 比 map 快很多的。
若 \(ba^j\) 冲突怎么办?答:存 \(j\) 大的。因为要想 \(x\) 尽量小,就要让 \(j\) 尽量大。
第一个找到的 \(i\) 和它对应的 \(j\) 就是答案。为什么?答:因为 \(i\) 变化 \(1\),\(x\) 变化的幅度是 \(t\)。
时间复杂度 \(\mathrm{O}(\sqrt{p})\)。
计算器:
#include <iostream>
#include <cstdio>
#include <cmath>
#include <map>
using namespace std;
typedef long long ll;
int T, k;
ll y, z, p;
map<int,int> d;
ll work1(ll a, ll b, ll p){
ll re=1;
while(b){
if(b&1) re = (re * a) % p;
a = (a * a) % p;
b >>= 1;
}
return re;
}
ll exgcd(ll a, ll b, ll &x, ll &y){
if(!b){
x = 1;
y = 0;
return a;
}
ll re=exgcd(b, a%b, x, y);
ll qwq=x;
x = y;
y = qwq - a / b * y;
return re;
}
void work2(){
ll u, v;
ll gcd=exgcd(y, p, u, v);
if(z%gcd) printf("Orz, I cannot find x!\n");
else
printf("%lld\n", ((u*z/gcd)%(p/gcd)+(p/gcd))%(p/gcd));
}
void work3(){
d.clear();
int m=sqrt(p);
if(m*m!=p) m++;
for(int i=0; i<=m; i++)
d[int((z*work1(y, i, p))%p)] = i;//当然这里也可以换掉快速幂,因为递推顺便就能求幂了
if(y%p==0){
if(z%p==1) printf("0\n");
else if(z%p==0) printf("1\n");
else printf("Orz, I cannot find x!\n");
return ;
}
for(int i=1; i<=m; i++){
int tmp=work1(y, i*m, p);
if(d.find(tmp)!=d.end()){
printf("%lld\n", (ll)i*m-d[tmp]);
return ;
}
}
printf("Orz, I cannot find x!\n");
}
int main(){
cin>>T>>k;
while(T--){
scanf("%lld %lld %lld", &y, &z, &p);
if(k==1) printf("%lld\n", work1(y, z, p));
if(k==2) work2();
if(k==3) work3();
}
return 0;
}
测试数据:
2 3
39 26 13
6 11 5
1
0
\(p\)无限制时
计算 \(a^x \equiv b \pmod p\),最难过的事情就是 \((a,p) \not = 1\)。那我们就想办法消掉一些 \(p\) 的因子让 \(a,p\) 互素。记 \(d=(a,p)\)。
倘若 \(d \nmid b\)(不整除的语法是 \nmid),则 \(b=1\) 时方程有解,解为 \(x=0\)。
倘若 \(d \mid b\) 且 \(d=1\),则就是普通的 bsgs。
否则,
\]
当然,还有更难过的是 \((a,p/d)\) 可能还不为 \(1\)……那就继续搞下去,直到
\]
且 \((a,\frac{p}{\prod_{i=1}^kd_i})=1\)。
当然还有更更难过的是还没到互素的时候就有 \(\frac{p}{\prod_{i=1}^\kappa d_i} \nmid b\)……那唯一的可能就是 \(x=0\) 了。
然后发现如果真正的解 \(x<k\) 的话比较难过,那我们在累积公约数的时候可以顺便判断 \(x \in [0,k)\) 时是否是解。
对于 \(x \geq k\) 的情况,我们为了赏心悦目,把方程换元为
\]
其中 \((a',p')=1\)。
这样就是一个普通的 bsgs。最终的解是 \(x=x'+k\)。
Clever Y:
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
using namespace std;
typedef long long ll;
int a, b, p;
const int mod=32767;//这不是质数,不好
int gcd(int a, int b){
return !b?a:gcd(b,a%b);
}
int ksm(int a, int b, int p){
int re=1;
while(b){
if(b&1) re = ((ll)re * a) % p;
a = ((ll)a * a) % p;
b >>= 1;
}
return re;
}
struct HASHTABLE{
int nxt[200005], dai[200005], ret[200005], hea[200005], hmn;
void clear(){
memset(nxt, 0, sizeof(nxt));
memset(hea, 0, sizeof(hea));
hmn = 0;
}
void insert(int x, int y){
int tmp=x%mod;
for(int i=hea[tmp]; i; i=nxt[i])
if(dai[i]==x){
ret[i] = y;
return ;
}
nxt[++hmn] = hea[tmp];
dai[hmn] = x; ret[hmn] = y;
hea[tmp] = hmn;
}
int query(int x){
int tmp=x%mod;
for(int i=hea[tmp]; i; i=nxt[i])
if(dai[i]==x)
return ret[i];
return -1;
}
}hashTable;
int exbsgs(int a, int b, int p){
hashTable.clear();
a %= p; b %= p;
if(b==1) return 0;
int cnt=0, d=1, g;
do{
g = gcd(a, p);
if(b%g) return -1;
p /= g; b /= g;
d = ((ll)d * a / g) % p;
cnt++;
if(b==d) return cnt;
}while(g!=1);
int m=ceil(sqrt(p)), t=b;
for(int i=0; i<=m; i++){
hashTable.insert(t, i);
t = ((ll)t * a) % p;
}
g = ksm(a, m, p);
t = ((ll)d * g) % p;
for(int i=1; i<=m; i++){
int re=hashTable.query(t);
if(re>=0) return i*m-re+cnt;
t = ((ll)t * g) % p;
}
return -1;
}
int main(){
while(scanf("%d %d %d", &a, &p, &b)!=EOF){
if(a+b+p==0) break;
int re=exbsgs(a, b, p);
if(re==-1) printf("No Solution\n");
else printf("%d\n", re);
}
return 0;
}
luogu2485 [SDOI2011]计算器 poj3243 Clever Y BSGS算法的更多相关文章
- POJ 3243 Clever Y | BSGS算法完全版
题目: 给你A,B,K 求最小的x满足Ax=B (mod K) 题解: 如果A,C互质请参考上一篇博客 将 Ax≡B(mod C) 看作是Ax+Cy=B方便叙述与处理. 我们将方程一直除去A,C的最大 ...
- poj3243 Clever Y[扩展BSGS]
Clever Y Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 8666 Accepted: 2155 Descript ...
- BZOJ 2242 [SDOI2011]计算器 ——EXGCD/快速幂/BSGS
三合一的题目. exgcd不解释,快速幂不解释. BSGS采用了一种不用写EXGCD的方法,写起来感觉好了很多. 比较坑,没给BSGS的样例(LAJI) #include <map> #i ...
- 【数论】【ex-BSGS】poj3243 Clever Y
用于求解高次同余方程A^x≡B(mod C),其中C不一定是素数. http://blog.csdn.net/tsaid/article/details/7354716 这篇题解写得最好. 那啥,这题 ...
- bzoj2242: [SDOI2011]计算器 && BSGS 算法
BSGS算法 给定y.z.p,计算满足yx mod p=z的最小非负整数x.p为质数(没法写数学公式,以下内容用心去感受吧) 设 x = i*m + j. 则 y^(j)≡z∗y^(-i*m)) (m ...
- BZOJ2242 [SDOI2011]计算器 【BSGS】
2242: [SDOI2011]计算器 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 4741 Solved: 1796 [Submit][Sta ...
- 【BZOJ2242】[SDOI2011]计算器 BSGS
[BZOJ2242][SDOI2011]计算器 Description 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ ...
- bzoj 2242: [SDOI2011]计算器 BSGS+快速幂+扩展欧几里德
2242: [SDOI2011]计算器 Time Limit: 10 Sec Memory Limit: 512 MB[Submit][Status][Discuss] Description 你被 ...
- BZOJ 2242: [SDOI2011]计算器( 快速幂 + 扩展欧几里德 + BSGS )
没什么好说的... --------------------------------------------------------------------- #include<cstdio&g ...
随机推荐
- AtCoder Grand Contest 016 C - +/- Rectangle
题目传送门:https://agc016.contest.atcoder.jp/tasks/agc016_c 题目大意: 给定整数\(H,W,h,w\),你需要判断是否存在满足如下条件的矩阵,如果存在 ...
- BZOJ5484(LIS性质+树状数组)
题目传送 学习的这篇题解. 结论: 1.直观感受一下会发现找到LIS,LIS里的东西相对位置是不会变的,其他的移一移总会排序成功的,所以其他的就是最小集合了,第一问的答案就是n-LIS: 2.寻找字典 ...
- Four Segments CodeForces - 846C
题目 题意:sum(l,r)表示数列a中索引为l到r-1(都包含)的数之和(如果l==r则为0).给出数列a,求合适的delim0, delim1, delim2,使res = sum(0, deli ...
- Netbeans自定义折叠代码
只需要在模块开始注释以//<editor-fold>开始, 在模块结束行以 //</editor-fold>结束即可 Can I Create Custom Code Fold ...
- R 关于全局变量
不得不吐槽了 写了这么多,竟然今天才发现R的全局变量在函数名空间里是不能赋值的,我去!!! 就是说在函数里面,全局变量名是可读的,但不可写(写的时候 又会创建新的 自由变量了)
- php服务端接收post的json数据
最近用到ext与PHP交互,ext把json数据post给PHP,但在PHP里面$_post获取不到,$_REQUEST也获取不到,但是通过firedebug看到的请求信息确实是把JSON数据post ...
- AJPFX关于抽象类和接口的区别
一.设计目的不同:接口体现的是一种规范,,类似于系统的总纲,它制定了系统的各模块应遵守的标准抽象类作为多个子类的共同父类,体现的是模式化的设计,抽象类可以认为是系统的中间产品,已经实现了部分功能,部分 ...
- AndroidStudio中使用SVN
AndroidStudio中使用SVN提交项目 1.安装SVN,我选择使用TortoiseSVN-1.8.7.25475-x64-svn-1.8.9.msi(安装文件地址如下:http://downl ...
- 【学习笔记】深入理解js原型和闭包(13)——【作用域】和【上下文环境】
上文简单介绍了作用域,本文把作用域和上下文环境结合起来说一下,会理解的更深一些. 如上图,我们在上文中已经介绍了,除了全局作用域之外,每个函数都会创建自己的作用域,作用域在函数定义时就已经确定了.而不 ...
- ES5函数新增的方法(call、apply、bind)
1.call()的使用<script type="text/javascript"> var obj1 = { name:'bob', fn:function(){ c ...