argv分别为,可执行文件名、读入的原始图像、输出原始图像的灰度值、输出原始图像灰度值沿x轴方向的一阶微分、输出原始图像灰度值沿x轴方向的二阶微分。

#include
#include
#include
#include
#include

#pragma comment( lib, "opencv_highgui243d.lib" ) 
#pragma comment( lib, "opencv_core243d.lib" ) 
#pragma comment( lib, "opencv_ml243d.lib" ) 
#pragma comment( lib, "opencv_imgproc243d.lib" )

int main( int argc, char** argv ) {

int height, width, step, channels;
    uchar *grayData;
   
    uchar grayDataTmp, prev1GrayDataTmp, prev2GrayDataTmp;
   
    int differentialGrayFirstOrder, differentialGraySecondOrder, prevDifferentialGrayFirstOrder;
    int i, j;
   
    FILE *fpGrayOrgn, *fpGrayFirst, *fpGraySecond;
   
    IplImage *grayImg;

//load image in single channel, aka. transform the image to gray (but not save)
    grayImg = cvLoadImage(argv[1], 0);

//exit from failing loading source image
    if (!grayImg)
    {
        printf("Could not load image file: %s", argv[1]);
        exit(1);
    }

//get basic information of the image
    height = grayImg->height;
    width = grayImg->width;
    step = grayImg->widthStep;
    channels = grayImg->nChannels;

//print image on screen and show basic information of the image
    printf("Processing a %dx%d image with %d channels\n", height, width, channels);
    cvNamedWindow ("mineSweeperWindow", CV_WINDOW_AUTOSIZE);
    cvShowImage ("mineSweeperWindow", grayImg);

//exit from file create error
    fpGrayOrgn = fopen(argv[2], "w+");
    if (fpGrayOrgn == NULL)
    {
        printf("File %s create/open error!", argv[2]);
        exit(2);
    }
    fpGrayFirst = fopen(argv[3], "w+");
    if (fpGrayFirst == NULL)
    {
        printf("File %s  create/open error!", argv[3]);
        exit(3);
    }
    fpGraySecond = fopen(argv[4], "w+");
    if (fpGraySecond == NULL)
    {
        printf("File %s create/open error!", argv[4]);
        exit(4);
    }

//move pointer to the start of file
    rewind(fpGrayOrgn);
    rewind(fpGrayFirst);
    rewind(fpGraySecond);

//get every value (in gray) and output to a txt file
    grayData = (uchar *)grayImg->imageData;
    for (i = 0; i < height; ++i)
    {
        for (j = 0; j < width; ++j)
        {
            //get value
            grayDataTmp = grayData[i*step+j];
            fprintf(fpGrayOrgn, "%4d ", grayDataTmp);

//init
            if (0 == j)
            {
                prev1GrayDataTmp = 0;
                prev2GrayDataTmp = 0;
                prevDifferentialGrayFirstOrder = 0;
            }
            //calculate  difference of first-order
            differentialGrayFirstOrder = (int)grayDataTmp - (int)prev1GrayDataTmp;
            fprintf (fpGrayFirst, "%4d", differentialGrayFirstOrder);

//calculate difference of second-order
            differentialGraySecondOrder = differentialGrayFirstOrder - prevDifferentialGrayFirstOrder;
            fprintf (fpGraySecond, "%4d", differentialGraySecondOrder);

//re-assignment
            prevDifferentialGrayFirstOrder = differentialGrayFirstOrder;
            prev2GrayDataTmp = prev1GrayDataTmp;
            prev1GrayDataTmp = grayDataTmp;
        }

//insert a newline
        fprintf(fpGrayOrgn, "\n");
        fprintf(fpGrayFirst, "\n");
        fprintf(fpGraySecond, "\n");
    }

fclose (fpGrayOrgn);
    fclose (fpGrayFirst);
    fclose (fpGraySecond);

//end print process
    cvWaitKey(0);
    cvReleaseImage( &grayImg );
    cvDestroyWindow("mineSwepperWindow");

return ( 0 );
}
【】

http://www.infineon-ecosystem.org/focusnie/blog/13-07/295656_9bd39.html

图像处理之基础---基于opencv的灰度图像微分的更多相关文章

  1. Python图像处理丨基于OpenCV和像素处理的图像灰度化处理

    摘要:本篇文章讲解图像灰度化处理的知识,结合OpenCV调用cv2.cvtColor()函数实现图像灰度操作,使用像素处理方法对图像进行灰度化处理. 本文分享自华为云社区<[Python图像处理 ...

  2. 图像处理基础(2):自适应中值滤波器(基于OpenCV实现)

    本文主要介绍了自适应的中值滤波器,并基于OpenCV实现了该滤波器,并且将自适应的中值滤波器和常规的中值滤波器对不同概率的椒盐噪声的过滤效果进行了对比.最后,对中值滤波器的优缺点了进行了总结. 空间滤 ...

  3. 基于Opencv的简单图像处理

    实验环境 本实验均在笔记本电脑完成,电脑的配置如表1所示: 系统 Windows 10 家庭版 处理器 英特尔 Core i5-6200 @ 2.30GHz 双核 主板 宏碁 Zoro_SL 内存 1 ...

  4. 基于Opencv和Mfc的图像处理增强库GOCVHelper(索引)

    GOCVHelper(GreenOpen Computer Version Helper )是我在这几年编写图像处理程序的过程中积累下来的函数库.主要是对Opencv的适当扩展和在实现Mfc程序时候的 ...

  5. 基于 opencv 的图像处理入门教程

    前言 虽然计算机视觉领域目前基本是以深度学习算法为主,但实际上很多时候对图片的很多处理方法,并不需要采用深度学习的网络模型,采用目前成熟的图像处理库即可实现,比如 OpenCV 和 PIL ,对图片进 ...

  6. 基于OpenCV的火焰检测(一)——图像预处理

    博主最近在做一个基于OpenCV的火焰检测的项目,不仅可以检测图片中的火焰,还可以检测视频中的火焰,最后在视频检测的基础上推广到摄像头实时检测.在做这个项目的时候,博主参考了很多相关的文献,用了很多种 ...

  7. OpenCV2学习笔记(十四):基于OpenCV卡通图片处理

    得知OpenCV有一段时间.除了研究的各种算法的内容.除了从备用,据导游书籍和资料,尝试结合链接的图像处理算法和日常生活,第一桌面上(随着摄像头)完成了一系列的视频流处理功能.开发平台Qt5.3.2+ ...

  8. 基于 OpenCV 的人脸识别

    基于 OpenCV 的人脸识别 一点背景知识 OpenCV 是一个开源的计算机视觉和机器学习库.它包含成千上万优化过的算法,为各种计算机视觉应用提供了一个通用工具包.根据这个项目的关于页面,OpenC ...

  9. Canny边缘检测算法(基于OpenCV的Java实现)

    目录 Canny边缘检测算法(基于OpenCV的Java实现) 绪论 Canny边缘检测算法的发展历史 Canny边缘检测算法的处理流程 用高斯滤波器平滑图像 彩色RGB图像转换为灰度图像 一维,二维 ...

随机推荐

  1. 【经验】停止Smart Card服务

    Windows+R键调出运行 输入 services.msc 有一项Smart Card的服务找到他->属性->启动类型(设置为禁用 )->确定,然后重新启动服务

  2. windows开发错误

    2018/07/16: 1.问题: 代码: list <int> listN; error C2065:'list' : undeclared identifier 我已经#include ...

  3. Nginx的初识

    今日刚接触了解到Nginx的反向代理,正向代理,并发,集群,同个站点不同域名的解析访问等等. 1.反向代理:Nginx充当一个桥接的作用,对用户和服务端进行链接,进行服务端的代理,这样有什么好处: a ...

  4. [学习资料] Tiny210(S5PV210) u-boot移植

    Tiny210(S5PV210) u-boot移植http://www.microoh.com/bbs/forum.php?mod=viewthread&tid=254&fromuid ...

  5. MongoDB数据库的安装

    首先就是MongoDB的下载,可以去MongoDB官网进行下载,https://www.mongodb.com/download-center/community,也可以通过百度网盘直接下载, 链接: ...

  6. oracle 11g完全卸载

    oracle 11g release2的完全卸载方式与前些版本有了改变,自带了一个卸载批处理文件——deinstall.bat.(这个工具可以从oracle的home进行完全的卸载,不管是单实例ora ...

  7. Codeforce 810C Do you want a date?

    题意: 给定n个不重复的数, 求出这些数的所有子集, 然后设一个数Ni 为 第i个子集中,最大的数 - 最小的数. 然后将i个 Ni求和, 结果mod 1e9 + 7. 分析: 首先将n个数排列,生成 ...

  8. JSONArray 遍历方式

    第一种(java8):遍历JSONArray 拼接字符串 public static void main(String[] args) { JSONArray jSONArray = new JSON ...

  9. Vue页面骨架屏(一)

    在开发webapp的时候总是会受到首屏加载时间过长的影响,主流的解决方法是在载入完成之前显示loading图效果,而一些大公司会配置一套服务端渲染的架构来解决这个问题.考虑到ssr所要解决的一系列问题 ...

  10. 添物零基础到架构师(基础篇) - JavaScript

    JavaScript是什么? JavaScript是web开发必须学习的,ECMAScript是其规则来源. JavaScript的历史 Developed by Brendan Eich of Ne ...