大概是对于f(x,y)求min,先把x看成常数,然后得到关于y的一元二次方程,然后取一元二次极值把y用x表示,再把x作为未知数带回去化简,最后能得到一个一元二次的式子,每次修改这个式子的参数即可。

智商欠费解释不清,详见Claris大神 http://www.cnblogs.com/clrs97/p/4403197.html

#include<cstdio>
#include<cmath>
using namespace std;
const int N=120005;
int n,q,op,i,m;
double X1,X2,Y1,Y2,a,b,c,d,aa[N],bb[N],cc[N],ab[N],ac[N],bc[N],saa,sbb,scc,sab,sac,sbc,eps=1e-8,ans;
inline bool cmp(double x)
{
return fabs(x)<eps;
}
inline double solve(double a,double b,double c)
{
if(cmp(a))
return c;
double x=-b/(2.0*a);
return a*x*x+b*x+c;
}
int main()
{
scanf("%d",&q);
while(q--)
{
scanf("%d",&op);
if(op==0)
{
scanf("%lf%lf%lf%lf",&X1,&Y1,&X2,&Y2);
if(cmp(X1-X2))
a=1,b=0,c=-X1;
else
a=(Y2-Y1)/(X2-X1),b=-1,c=Y1-a*X1;
d=a*a+b*b;
aa[++n]=a*a/d,bb[n]=b*b/d,cc[n]=c*c/d,ab[n]=a*b/d,ac[n]=a*c/d,bc[n]=b*c/d;
saa+=aa[n],sbb+=bb[n],scc+=cc[n],sab+=ab[n],sac+=ac[n],sbc+=bc[n];
m++;
}
if(op==1)
{
scanf("%d",&i);
saa-=aa[i],sbb-=bb[i],scc-=cc[i],sab-=ab[i],sac-=ac[i],sbc-=bc[i];
m--;
}
if(op==2)
{
if(!m)
{
puts("0.00");
continue;
}
if(cmp(sbb))
a=b=0;
else
a=-sab/sbb,b=-sbc/sbb;
ans=solve(saa+2.0*a*sab+a*a*sbb,2.0*(b*sab+sac+a*b*sbb+a*sbc),b*b*sbb+2.0*b*sbc+scc);
if(cmp(ans))
ans=0;
printf("%.2f\n",ans);
}
}
return 0;
}

bzoj 2508: 简单题【拉格朗日乘数法】的更多相关文章

  1. BZOJ 2508: 简单题

    题目大意: 加入直线,删除直线,求点到所有直线的距离的平方和. 题解: 把点到直线的距离公式写出来,然后展开.维护六个值,计算一个二元的多项式的最小值. 对x和y分别求导,导数都为零时取到极值.然后解 ...

  2. bzoj 2876: [Noi2012]骑行川藏【拉格朗日乘数法+二分】

    详见: http://blog.csdn.net/popoqqq/article/details/42366599 http://blog.csdn.net/whzzt/article/details ...

  3. [Math & Algorithm] 拉格朗日乘数法

    拉格朗日乘数法(Lagrange Multiplier Method)之前听数学老师授课的时候就是一知半解,现在越发感觉拉格朗日乘数法应用的广泛性,所以特意抽时间学习了麻省理工学院的在线数学课程.新学 ...

  4. ML(附录4)——拉格朗日乘数法

    基本的拉格朗日乘子法(又称为拉格朗日乘数法),就是求函数 f(x1,x2,...) 在 g(x1,x2,...)=C 的约束条件下的极值的方法.其主要思想是引入一个新的参数 λ (即拉格朗日乘子),将 ...

  5. CodeChef TWOROADS(计算几何+拉格朗日乘数法)

    题面 传送门 简要题意:给出\(n\)个点,请求出两条直线,并最小化每个点到离它最近的那条直线的距离的平方和,\(n\leq 100\) orz Shinbokuow 前置芝士 给出\(n\)个点,请 ...

  6. BZOJ3775: 点和直线(计算几何+拉格朗日乘数法)

    题面 传送门 题解 劲啊-- 没有和\(Claris\)一样推,用了类似于\(Shinbokuow\)推已知点求最短直线的方法,结果\(WA\)了好几个小时,拿\(Claris\)代码拍了几个小时都没 ...

  7. BZOJ2876 [Noi2012]骑行川藏 【拉格朗日乘数法】

    题目链接 BZOJ 题解 拉格朗日乘数法 拉格朗日乘数法用以求多元函数在约束下的极值 我们设多元函数\(f(x_1,x_2,x_3,\dots,x_n)\) 以及限制\(g(x_1,x_2,x_3,\ ...

  8. CodeForces - 813C The Tag Game(拉格朗日乘数法,限制条件求最值)

    [传送门]http://codeforces.com/problemset/problem/813/C [题意]给定整数a,b,c,s,求使得  xa yb zc值最大的实数 x,y,z , 其中x ...

  9. 《University Calculus》-chaper12-多元函数-拉格朗日乘数法

    求解条件极值的方法:拉格朗日乘数法 基于对多元函数极值方法的了解,再具体的问题中我们发现这样一个问题,在求解f(x,y,z)的极值的时候,我们需要极值点落在g(x,y,z)上这种对极值点有约束条件,通 ...

随机推荐

  1. 2015轻院校赛 B 迷宫 (bfs)

    http://acm.zznu.edu.cn/problem.php?id=1967 这套题的有毒   我交了好多遍才对 坑:机关要按照顺序走 并且在走这个机关之前不能走这个机关  但是能穿过这个机关 ...

  2. [MGR——Mysql的组复制之多主模式 ] 详细搭建部署过程

    组复制可以在两种模式下运行. 1.在单主模式下,组复制具有自动选主功能,每次只有一个 server成员接受更新.2.在多主模式下,所有的 server 成员都可以同时接受更新.   组复制与异步主从复 ...

  3. Linux下异常信号

    我们介绍一些标准信号的名称以及它们代表的事件.每一个信号名称是一个代表正整数的宏,但是你不要试图去推测宏代表的具体数值,而是直接使用名称.这是因为这个数值会随不同的系统或同样系统的不同版本而不同,但是 ...

  4. Java子类重写父类方法注意问题收集(转)

    子类不能重写父类的静态方法,私有方法.即使你看到子类中存在貌似是重写的父类的静态方法或者私有方法,编译是没有问题的,但那其实是你重新又定义的方法,不是重写.具体有关重写父类方法的规则如下: 重写规则之 ...

  5. 【TFS 2017 CI/CD系列 - 02】-- Build篇

    .创建Build 登录TFS,在现有的[Projects]中选择一个需要要创建Build的Project,点击[Build & Release]跳转页面 在新页面中选择[Builds]选项卡, ...

  6. [转]JAVA异常

    异常 异常就是导致程序中断执行的一段指令流. 在java中, 对于异常在API中也有明确的定义,叫做异常类. Error : JVM的错误, 程序中不进行处理, 交给虚拟机. Exception : ...

  7. ExpandableListView的使用以及信息的高亮显示

    ExpandableListView是ListView控件的延伸,它能够对数据进行分组显示和隐藏,并统计总数量.可进行滚动,对某一内容高亮显示. <1>编写xml布局文件,用于获取Expa ...

  8. unique函数(STL)

    unique()函数是一个去重函数,STL中unique的函数 unique的功能是去除相邻的重复元素(只保留一个),还有一个容易忽视的特性是它并不真正把重复的元素删除.他是c++中的函数,所以头文件 ...

  9. asp.net mvc的权限管理设计

    现在集中展示用户-角色-权限管理的功能,因此,所有数据表一律简化处理.   1 后台管理效果 (1)角色管理 (2)权限管理   2 数据库设计(MSSQL) (1)用户表dbo.Users 项 类型 ...

  10. 通过SQL SERVER加入系统管理员帐号

    通过SQL SERVER加入系统管理员帐号.当然是须要有足够的权限,远程链接数据库后执行脚本,脚本例如以下: /* 此代码是在master数据库下执行 添加系统管理员:mmcgzs password: ...