我在这道题上花了2个小时,仍没解出。理一下当时的思路,看看症结到底在哪里。

题意

用 $[n]$ 表示集合 $\{1,2,3,\dots, n\}$ 。

3个函数

$f \colon [n] \to [n]$

$g \colon [n] \to [m]$

$h \colon [m] \to [n]$

满足下列两个性质

  1. $\forall x \in [m], g(h(x)) = x$
  2. $\forall x \in [n], h(g(x)) = f(x)$

给出 $f$ ,求 $g, h$ 。如有多解,任给一组。

分析

由性质1可知

  • $g$ 是满射(surjective),$h$ 是单射(injective)

进而据性质2可知

  • $g$ 和 $h$ 值域相同 $\Rightarrow$ $m$ 等于 $f$ 的不同函数值的个数。换言之,$h$ 是 $f$ 值域中元素的一个排列。
  • $\forall x_1, x_2 \in [n], g(x_1) = g(x_2) \Leftrightarrow f(x_1) = f(x_2)$ 。换言之,$h$ 和 $f$ 相似。

至此可得有解的一个必要条件:

对于 $f$ 值域中的任意两不同元素 $y_1, y_2$,$f(y_1) \ne f(y_2)$ 。

遗憾的是,这个必要条件太弱了。

样例

2
2 1

满足条件,却是无解的。

思路到这里就断了。

现在回过头来想,问题的根源在于:

在 $f$ 满足上面推导出的必要条件的情况下,将 $h$ 任取为 $f$ 值域中元素的一个排列后,再求 $g$ 时,性质1和性质2仍可能互相矛盾。

那么是否需要枚举排列呢?

我没有认识到的是

不论如何求解 $g$ 和 $h$,是否有解只取决于 $f$ 本身。

所以应当进一步挖掘有解的必要条件甚至充要条件。

题解上的分析

$$

\left.

\begin{aligned}

g \circ h = \mathbf{1} \\

h \circ g = f

\end{aligned}

\right\}

\Longrightarrow

\begin{aligned}

f \circ f &= (h \circ g) \circ (h \circ g) \\

&= h \circ (g \circ h) \circ g \\

&= h \circ \mathbf{1} \circ g \\

&= h \circ g \\

&= f

\end{aligned}

$$

若 $f(x) = y$,则 $f(y)=f(f(x))=f(x)=y$ 。

即 $f$ 值域中的每个元素都是 $f$ 的不动点(fixed point)。(性质3)

这个必要条件比上面那个必要条件强得多。

下面证明

若 $f$ 满足性质3,则将 $h$ 取为 $f$ 值域中元素的任意排列,依据性质2求出的 $g$ 都满足性质1。

$g(x) = h^{-1}(f(x))$

$g(h(x)) = h^{-1}(f(h(x))) = h^{-1}(h(x)) = x$

Codeforces #765D的更多相关文章

  1. 【codeforces 765D】Artsem and Saunders

    [题目链接]:http://codeforces.com/contest/765/problem/D [题意] 给你一个函数f(x); 要让你求2个函数g[x]和h[x],使得g[h[x]] = x对 ...

  2. python爬虫学习(5) —— 扒一下codeforces题面

    上一次我们拿学校的URP做了个小小的demo.... 其实我们还可以把每个学生的证件照爬下来做成一个证件照校花校草评比 另外也可以写一个物理实验自动选课... 但是出于多种原因,,还是绕开这些敏感话题 ...

  3. 【Codeforces 738D】Sea Battle(贪心)

    http://codeforces.com/contest/738/problem/D Galya is playing one-dimensional Sea Battle on a 1 × n g ...

  4. 【Codeforces 738C】Road to Cinema

    http://codeforces.com/contest/738/problem/C Vasya is currently at a car rental service, and he wants ...

  5. 【Codeforces 738A】Interview with Oleg

    http://codeforces.com/contest/738/problem/A Polycarp has interviewed Oleg and has written the interv ...

  6. CodeForces - 662A Gambling Nim

    http://codeforces.com/problemset/problem/662/A 题目大意: 给定n(n <= 500000)张卡片,每张卡片的两个面都写有数字,每个面都有0.5的概 ...

  7. CodeForces - 274B Zero Tree

    http://codeforces.com/problemset/problem/274/B 题目大意: 给定你一颗树,每个点上有权值. 现在你每次取出这颗树的一颗子树(即点集和边集均是原图的子集的连 ...

  8. CodeForces - 261B Maxim and Restaurant

    http://codeforces.com/problemset/problem/261/B 题目大意:给定n个数a1-an(n<=50,ai<=50),随机打乱后,记Si=a1+a2+a ...

  9. CodeForces - 696B Puzzles

    http://codeforces.com/problemset/problem/696/B 题目大意: 这是一颗有n个点的树,你从根开始游走,每当你第一次到达一个点时,把这个点的权记为(你已经到过不 ...

随机推荐

  1. 十四个关于ASP.NET基础知识问答(C#版)

    这是一些ASP.NET很基础的东西,希望对ASP.NET爱好者特别是刚刚入门的朋友有所帮助虽然示例代码是C#.NET,但是不影响VB.NET朋友的参考.好,继续往下看吧! 1.ASP.NET能在那些系 ...

  2. springMVC中jackson的使用(包含JsonFormat 时间格式)

    前台使用ajax,后台 springMVC Java下常见的Json类库有Gson.JSON-lib和Jackson等,Jackson相对来说比较高效,在项目中主要使用Jackson进行JSON和Ja ...

  3. C#遍历文件夹下全部文件

    public static List<string> GetFile(string path, List<string> FileList, string RelativePa ...

  4. Python 基础-3

    使用while打印1 2 3 4  5 6   8 9 10 count = 0 #while count < 10: while count < 10: count += 1 if co ...

  5. tcpdump简单使用

    1.使用wincap将文件放入系统任意路径, 2.进入系统,赋文件可执行权限, 3.输入命令:./tcpdump -i eth0 -s 0 -w xxx.pcap 4.进行数据交互 5.退出程序运行, ...

  6. 精选30道Java笔试题附答案分析

    精选30道Java笔试题解答 都是一些非常非常基础的题,是我最近参加各大IT公司笔试后靠记忆记下来的,经过整理献给与我一样参加各大IT校园招聘的同学们,纯考Java基础功底,老手们就不用进来了,免得笑 ...

  7. Bootstrap历练实例:分页状态

    分页的状态 下面的实例演示了上表中所讨论的 class .disabled..active 的用法: <!DOCTYPE html><html><head>< ...

  8. java 操作mongodb查询条件的常用设置

    java操作mongodb进行查询,常用筛选条件的设置如下: 条件列表:BasicDBList condList = new BasicDBList(); 临时条件对象:BasicDBObject c ...

  9. 基于PassThru的NDIS中间层驱动程序扩展

    基于PassThru的NDIS中间层驱动程序扩展                                  独孤求真 概要:开发一个NDIS驱动是一项相对复杂的工作,这一方面是由于核心驱动本身 ...

  10. 变色龙启动MAC时,错误信息“ntfs_fixup: magic doesn't match:”的解决办法

    如下是变色龙启动的bdmesg,解决办法就是用mac的磁盘管理器,对ntfs分区进行检验修复.需要安装ntfs的驱动支持. 实在不行,就删除调整过大小的分区,重新用Windows的磁盘管理器重新分区. ...