题目链接:https://vjudge.net/problem/HUST-1017

1017 - Exact cover

时间限制:15秒 内存限制:128兆

自定评测 7673
次提交 3898 次通过
题目描述
There is an N*M matrix with only 0s and 1s, (1 <= N,M <= 1000). An exact cover is a selection of rows such that every column has a 1 in exactly one of the selected rows. Try to find out the selected rows.
输入
There are multiply test cases. First line: two integers N, M; The following N lines: Every line first comes an integer C(1 <= C <= 100), represents the number of 1s in this row, then comes C integers: the index of the columns whose value is 1 in this row.
输出
First output the number of rows in the selection, then output the index of the selected rows. If there are multiply selections, you should just output any of them. If there are no selection, just output "NO".
样例输入
6 7
3 1 4 7
2 1 4
3 4 5 7
3 3 5 6
4 2 3 6 7
2 2 7
样例输出
3 2 4 6
提示
来源
dupeng

代码如下:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
#define ms(a,b) memset((a),(b),sizeof((a)))
using namespace std;
typedef long long LL;
const int MAXN = 1e3+10;
const int MAXM = 1e3+10;
const int maxnode = 1e6+10; int n, m;
struct DLX //矩阵的行和列是从1开始的
{
int n, m, size; //size为结点数
int U[maxnode], D[maxnode], L[maxnode], R[maxnode], Row[maxnode], Col[maxnode];
int H[MAXN], S[MAXM]; //H为每一行的头结点,但不参与循环。S为每一列的结点个数
int ansd, ans[MAXN]; void init(int _n, int _m) //m为列
{
n = _n;
m = _m;
for(int i = 0; i<=m; i++) //初始化列的头结点
{
S[i] = 0;
U[i] = D[i] = i;
L[i] = i-1;
R[i] = i+1;
}
R[m] = 0; L[0] = m;
size = m;
for(int i = 1; i<=n; i++) H[i] = -1; //初始化行的头结点
} void Link(int r, int c)
{
size++; //类似于前向星
Col[size] = c;
Row[size] = r;
S[Col[size]]++;
D[size] = D[c];
U[D[c]] = size;
U[size] = c;
D[c] = size;
if(H[r]==-1) H[r] = L[size] = R[size] = size; //当前行为空
else //当前行不为空: 头插法,无所谓顺序,因为Row、Col已经记录了位置
{
R[size] = R[H[r]];
L[R[H[r]]] = size;
L[size] = H[r];
R[H[r]] = size;
}
} void remove(int c) //c是列的编号, 不是结点的编号
{
L[R[c]] = L[c]; R[L[c]] = R[c]; //在列的头结点的循环队列中, 越过列c
for(int i = D[c]; i!=c; i = D[i])
for(int j = R[i]; j!=i; j = R[j])
{
//被删除结点的上下结点仍然有记录
U[D[j]] = U[j];
D[U[j]] = D[j];
S[Col[j]]--;
}
} void resume(int c)
{
L[R[c]] = R[L[c]] = c;
for(int i = U[c]; i!=c; i = U[i])
for(int j = L[i]; j!=i; j = L[j])
{
U[D[j]] = D[U[j]] = j;
S[Col[j]]++;
}
} bool Dance(int d)
{
if(R[0]==0)
{
printf("%d ", d);
for(int i = 0; i<d; i++)
printf("%d ", ans[i]);
printf("\n");
return true;
} int c = R[0];
for(int i = R[0]; i!=0; i = R[i]) //挑结点数最少的那一列,否则会超时,那为什么呢?
if(S[i]<S[c])
c = i; remove(c);
for(int i = D[c]; i!=c; i = D[i])
{
ans[d] = Row[i];
for(int j = R[i]; j!=i; j = R[j]) remove(Col[j]);
if(Dance(d+1)) return true;
for(int j = L[i]; j!=i; j = L[j]) resume(Col[j]);
}
resume(c);
return false;
}
}; DLX dlx;
int main()
{
while(scanf("%d%d", &n, &m)!=EOF)
{
dlx.init(n,m); //初始化矩阵, n*m为矩阵的大小
for(int i = 1; i<=n; i++)
{
int num, j;
scanf("%d",&num);
while(num--)
{
scanf("%d", &j);
dlx.Link(i, j); //在矩阵中的第i行, 第j列加入一个“1”
}
}
if(!dlx.Dance(0))
puts("NO");
}
return 0;
}

HUST1017 Exact cover —— Dancing Links 精确覆盖 模板题的更多相关文章

  1. hust 1017 dancing links 精确覆盖模板题

    最基础的dancing links的精确覆盖题目 #include <iostream> #include <cstring> #include <cstdio> ...

  2. [ACM] HUST 1017 Exact cover (Dancing Links,DLX模板题)

    DESCRIPTION There is an N*M matrix with only 0s and 1s, (1 <= N,M <= 1000). An exact cover is ...

  3. 【转】Dancing Links精确覆盖问题

    原文链接:http://sqybi.com/works/dlxcn/ (只转载过来一部分,全文请看原文,感觉讲得很好~)正文    精确覆盖问题    解决精确覆盖问题    舞蹈步骤    效率分析 ...

  4. HUST 1017 Exact cover(DLX精确覆盖)

    Description There is an N*M matrix with only 0s and 1s, (1 <= N,M <= 1000). An exact cover is ...

  5. hihoCoder #1321 : 搜索五•数独 (Dancing Links ,精确覆盖)

    hiho一下第102周的题目. 原题地址:http://hihocoder.com/problemset/problem/1321 题意:输入一个9*9数独矩阵,0表示没填的空位,输出这个数独的答案. ...

  6. HUST 1017 Exact cover (Dancing links)

    1017 - Exact cover 时间限制:15秒 内存限制:128兆 自定评测 6110 次提交 3226 次通过 题目描述 There is an N*M matrix with only 0 ...

  7. ZOJ 3209 Treasure Map (Dancing Links 精确覆盖 )

    题意 :  给你一个大小为 n * m 的矩形 , 坐标是( 0 , 0 ) ~ ( n , m )  .然后给你 p 个小矩形 . 坐标是( x1 , y1 ) ~ ( x2 , y2 ) , 你选 ...

  8. HDU 3111 Sudoku ( Dancing Links 精确覆盖模型 )

    推荐两篇学DLX的博文: http://bbs.9ria.com/thread-130295-1-1.html(这篇对DLX的工作过程演示的很详细) http://yzmduncan.iteye.co ...

  9. POJ3074 Sudoku —— Dancing Links 精确覆盖

    题目链接:http://poj.org/problem?id=3074 Sudoku Time Limit: 1000MS   Memory Limit: 65536K Total Submissio ...

随机推荐

  1. fmt 包中的函数和方法

    / Fprintf 将参数列表 a 填写到格式字符串 format 的占位符中// 并将填写后的结果写入 w 中,返回写入的字节数func Fprintf(w io.Writer, format st ...

  2. omcat 7 的domain域名配置,Tomcat 修改JSESSIONID

    https://blog.csdn.net/catoop/article/details/64581325

  3. 洛谷——P2733 家的范围 Home on the Range

    P2733 家的范围 Home on the Range 题目背景 农民约翰在一片边长是N (2 <= N <= 250)英里的正方形牧场上放牧他的奶牛.(因为一些原因,他的奶牛只在正方形 ...

  4. c字符和字符数组/字符串

    一维和二维的都可以:一维的情况如下:1,char string0[10];2,char string1[]="prison break";3,char string2[100]=& ...

  5. 网络安全(超级详细)零基础带你一步一步走进缓冲区溢出漏洞和shellcode编写!

    零基础带你走进缓冲区溢出,编写shellcode. 写在前面的话:本人是以一个零基础者角度来带着大家去理解缓冲区溢出漏洞,当然如果你是开发者更好. 注:如果有转载请注明出处!创作不易.谢谢合作. 0. ...

  6. MD5加密算法Java代码

    原文:http://www.open-open.com/code/view/1428398234916 import java.security.MessageDigest; import java. ...

  7. Android开发系列(二十一):Spinner的功能和使用方法以及实现列表选择框

    Spinner是一个列表选择框.相当于弹出一个菜单供用户进行选择. Spinner继承AdapterView Spinnet支持的XML的属性: android:entries:使用数组资源设置该下拉 ...

  8. linux 进程间通信之 消息队列

    消息队列就是一个消息的链表. 能够把消息看作一个记录,具有特定的格式以及特定的优先级.对消息队列有写权限的进程能够向中依照一定的规则加入新消息.有读权限的进程则能够读走消息. 读走就没有了.消息队列是 ...

  9. HDU 4791 Alice&#39;s Print Service 水二分

    点击打开链接 Alice's Print Service Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ( ...

  10. 在线API

    JExcelApi http://jexcelapi.sourceforge.net/resources/javadocs/index.html Poi http://poi.apache.org/a ...