Halloween treats
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 6631   Accepted: 2448   Special Judge

Description

Every year there is the same problem at Halloween: Each neighbour is only willing to give a certain total number of sweets on that day, no matter how many children call on him, so it may happen that a child will get nothing if it is too late. To avoid conflicts,
the children have decided they will put all sweets together and then divide them evenly among themselves. From last year's experience of Halloween they know how many sweets they get from each neighbour. Since they care more about justice than about the number
of sweets they get, they want to select a subset of the neighbours to visit, so that in sharing every child receives the same number of sweets. They will not be satisfied if they have any sweets left which cannot be divided.

Your job is to help the children and present a solution.

Input

The input contains several test cases.

The first line of each test case contains two integers c and n (1 ≤ c ≤ n ≤ 100000), the number of children and the number of neighbours, respectively. The next line contains n space
separated integers a1 , ... , an (1 ≤ ai ≤ 100000 ), where ai represents the number of sweets the children get if they visit
neighbour i.

The last test case is followed by two zeros.

Output

For each test case output one line with the indices of the neighbours the children should select (here, index i corresponds to neighbour i who gives a total number of ai sweets).
If there is no solution where each child gets at least one sweet print "no sweets" instead. Note that if there are several solutions where each child gets at least one sweet, you may print any of them.

Sample Input

4 5
1 2 3 7 5
3 6
7 11 2 5 13 17
0 0

Sample Output

3 5
2 3 4

Source

题意:给出c和n,接下来n个数,求随意的几个数的和为c的倍数,输出随意一组答案(注意是随意的)

抽屉原理: 放10个苹果到九个抽屉,最少有一个抽屉有大于1的苹果

这个题为什么说是抽屉原理呢?  你计算前n个数(一共同拥有n个和)的和mod  c ,由于n大于c,所以你推測会有多少个余数。

最多有 n个。即 0~n-1,而0是满足条件的,换而言之。这n个余数中要么有0,要么最少有两个同样的余数,

如今看两个余数同样的情况,比如   如果sum[1]%c==sum[n]%c  那么a[2]+a[3]+..+a[n]就是 c  的倍数。就说这么多了。

看代码吧:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define N 100005 int a[N];
int vis[N];
int c,n; int main()
{
int i;
while(~scanf("%d%d",&c,&n))
{
memset(vis,-1,sizeof(vis)); for(i=1;i<=n;i++)
{
scanf("%d",&a[i]);
} int temp=0,j; for(i=1;i<=n;i++)
{
temp+=a[i];
temp%=c; if(temp==0)
{
for(j=1;j<=i;j++)
if(j==1)
printf("%d",j);
else
printf(" %d",j); printf("\n");
break;
} if(vis[temp]!=-1)
{ for(j=vis[temp]+1;j<=i;j++)
if(i==j)
printf("%d",j);
else
printf("%d ",j); printf("\n"); break;
} vis[temp]=i;
} }
return 0;
}

POJ 3370 Halloween treats(抽屉原理)的更多相关文章

  1. POJ 3370. Halloween treats 抽屉原理 / 鸽巢原理

    Halloween treats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7644   Accepted: 2798 ...

  2. POJ 3370 Halloween treats(抽屉原理)

    Halloween treats Every year there is the same problem at Halloween: Each neighbour is only willing t ...

  3. POJ 3370 Halloween treats 鸽巢原理 解题

    Halloween treats 和POJ2356差点儿相同. 事实上这种数列能够有非常多,也能够有不连续的,只是利用鸽巢原理就是方便找到了连续的数列.并且有这种数列也必然能够找到. #include ...

  4. [POJ 3370] Halloween treats

    Halloween treats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7143   Accepted: 2641 ...

  5. uva 11237 - Halloween treats(抽屉原理)

    版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/u011328934/article/details/37612503 题目链接:uva 11237 ...

  6. POJ 3370 Halloween treats( 鸽巢原理简单题 )

    链接:传送门 题意:万圣节到了,有 c 个小朋友向 n 个住户要糖果,根据以往的经验,第i个住户会给他们a[ i ]颗糖果,但是为了和谐起见,小朋友们决定要来的糖果要能平分,所以他们只会选择一部分住户 ...

  7. poj 3370 Halloween treats(鸽巢原理)

    Description Every year there is the same problem at Halloween: Each neighbour is only willing to giv ...

  8. 鸽巢原理应用-分糖果 POJ 3370 Halloween treats

    基本原理:n+1只鸽子飞回n个鸽笼至少有一个鸽笼含有不少于2只的鸽子. 很简单,应用却也很多,很巧妙,看例题: Description Every year there is the same pro ...

  9. UVA 11237 - Halloween treats(鸽笼原理)

    11237 - Halloween treats option=com_onlinejudge&Itemid=8&page=show_problem&category=516& ...

随机推荐

  1. UI开发复杂度度量

    1)要素的个数: 2)要素布局和渲染的复杂度: 3)交互的复杂度. 本质上分为两种:要素的复杂度和联系的复杂度. 联系包含要素间布局的联系与交互的联系,已经和外部上下文的联系.

  2. ascii - 在八进制,十进制,十六进制中的 ASCII 字符集编码

    描述 ASCII 是美国对于信息交换的标准代码,它是7位码,许多8位码(比如 ISO 8859-1, Linux 的默认字符集)容纳 ASCII 作为它们的下半部分.对应的国际 ASSII 是 ISO ...

  3. 09CSS高级定位

    CSS高级定位 定位方式——position position:static|absolute|relative static表示为静态定位,是默认设置.  absolute表示绝对定位,与下位置属 ...

  4. js 发送短信验证码倒计时

    html <input type="button" id="btn" value="免费获取验证码" onclick="se ...

  5. redis新特性

    摘自<redis 4.xcookbook> 从实例重启同步] 故障切换同步] 4.0之前从实例主键过期bug redis4新特性 Memory Command Lazy Free PSYN ...

  6. PHP-碎片知识 $_SERVER['argv']

    1.cli模式(命令行)下,第一个参数$_SERVER['argv'][0]是脚本名,其余的是传递给脚本的参数 2.web网页模式下 在web页模式下必须在php.ini开启register_argc ...

  7. 2.10.2 section元素

    section元素 <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> & ...

  8. LAMP 服务器环境

    学习PHP脚本编程语言之前,必须先搭建并熟悉开发环境,开发环境有很多种,例如LAMP.WAMP.MAMP等.这里我介绍一下LAMP环境的搭建,即Linux.Apache.MySQL.PHP环境. 一. ...

  9. python3.x Day6 多线程

    线程???进程????区别???何时使用??? 进程:是程序以一个整体的形式暴露给操作系统管理,里边包含了对各种资源的调用,内存的使用,对各种资源的管理的集合,这就叫进程 线程:是操作系统最小的调度单 ...

  10. 大数据平台消息流系统Kafka

    Kafka前世今生 随着大数据时代的到来,数据中蕴含的价值日益得到展现,仿佛一座待人挖掘的金矿,引来无数的掘金者.但随着数据量越来越大,如何实时准确地收集并分析如此大的数据成为摆在所有从业人员面前的难 ...