POJ 3370 Halloween treats(抽屉原理)
Time Limit: 2000MS | Memory Limit: 65536K | |||
Total Submissions: 6631 | Accepted: 2448 | Special Judge |
Description
Every year there is the same problem at Halloween: Each neighbour is only willing to give a certain total number of sweets on that day, no matter how many children call on him, so it may happen that a child will get nothing if it is too late. To avoid conflicts,
the children have decided they will put all sweets together and then divide them evenly among themselves. From last year's experience of Halloween they know how many sweets they get from each neighbour. Since they care more about justice than about the number
of sweets they get, they want to select a subset of the neighbours to visit, so that in sharing every child receives the same number of sweets. They will not be satisfied if they have any sweets left which cannot be divided.
Your job is to help the children and present a solution.
Input
The input contains several test cases.
The first line of each test case contains two integers c and n (1 ≤ c ≤ n ≤ 100000), the number of children and the number of neighbours, respectively. The next line contains n space
separated integers a1 , ... , an (1 ≤ ai ≤ 100000 ), where ai represents the number of sweets the children get if they visit
neighbour i.
The last test case is followed by two zeros.
Output
For each test case output one line with the indices of the neighbours the children should select (here, index i corresponds to neighbour i who gives a total number of ai sweets).
If there is no solution where each child gets at least one sweet print "no sweets" instead. Note that if there are several solutions where each child gets at least one sweet, you may print any of them.
Sample Input
4 5
1 2 3 7 5
3 6
7 11 2 5 13 17
0 0
Sample Output
3 5
2 3 4
Source
题意:给出c和n,接下来n个数,求随意的几个数的和为c的倍数,输出随意一组答案(注意是随意的)
抽屉原理: 放10个苹果到九个抽屉,最少有一个抽屉有大于1的苹果
这个题为什么说是抽屉原理呢? 你计算前n个数(一共同拥有n个和)的和mod c ,由于n大于c,所以你推測会有多少个余数。
最多有 n个。即 0~n-1,而0是满足条件的,换而言之。这n个余数中要么有0,要么最少有两个同样的余数,
如今看两个余数同样的情况,比如 如果sum[1]%c==sum[n]%c 那么a[2]+a[3]+..+a[n]就是 c 的倍数。就说这么多了。
看代码吧:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define N 100005 int a[N];
int vis[N];
int c,n; int main()
{
int i;
while(~scanf("%d%d",&c,&n))
{
memset(vis,-1,sizeof(vis)); for(i=1;i<=n;i++)
{
scanf("%d",&a[i]);
} int temp=0,j; for(i=1;i<=n;i++)
{
temp+=a[i];
temp%=c; if(temp==0)
{
for(j=1;j<=i;j++)
if(j==1)
printf("%d",j);
else
printf(" %d",j); printf("\n");
break;
} if(vis[temp]!=-1)
{ for(j=vis[temp]+1;j<=i;j++)
if(i==j)
printf("%d",j);
else
printf("%d ",j); printf("\n"); break;
} vis[temp]=i;
} }
return 0;
}
POJ 3370 Halloween treats(抽屉原理)的更多相关文章
- POJ 3370. Halloween treats 抽屉原理 / 鸽巢原理
Halloween treats Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 7644 Accepted: 2798 ...
- POJ 3370 Halloween treats(抽屉原理)
Halloween treats Every year there is the same problem at Halloween: Each neighbour is only willing t ...
- POJ 3370 Halloween treats 鸽巢原理 解题
Halloween treats 和POJ2356差点儿相同. 事实上这种数列能够有非常多,也能够有不连续的,只是利用鸽巢原理就是方便找到了连续的数列.并且有这种数列也必然能够找到. #include ...
- [POJ 3370] Halloween treats
Halloween treats Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 7143 Accepted: 2641 ...
- uva 11237 - Halloween treats(抽屉原理)
版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/u011328934/article/details/37612503 题目链接:uva 11237 ...
- POJ 3370 Halloween treats( 鸽巢原理简单题 )
链接:传送门 题意:万圣节到了,有 c 个小朋友向 n 个住户要糖果,根据以往的经验,第i个住户会给他们a[ i ]颗糖果,但是为了和谐起见,小朋友们决定要来的糖果要能平分,所以他们只会选择一部分住户 ...
- poj 3370 Halloween treats(鸽巢原理)
Description Every year there is the same problem at Halloween: Each neighbour is only willing to giv ...
- 鸽巢原理应用-分糖果 POJ 3370 Halloween treats
基本原理:n+1只鸽子飞回n个鸽笼至少有一个鸽笼含有不少于2只的鸽子. 很简单,应用却也很多,很巧妙,看例题: Description Every year there is the same pro ...
- UVA 11237 - Halloween treats(鸽笼原理)
11237 - Halloween treats option=com_onlinejudge&Itemid=8&page=show_problem&category=516& ...
随机推荐
- hibernate 离线查询(DetachedCriteria)
离线查询使用DetachedCriteria对象设置限制条件,然后再通过session获取Criteria对象. 使用场景: 例如Biz类和Dao类,在Dao类中利用session操作CRUD,如果你 ...
- caffe blob理解
blob数据结构是caffe中基本的数据存储单元,它主要存储的数据是网络中的中间数据变量,比如各层的输入和输出:代价函数关于网络各层参数的梯度. blob中除了存储数据外,还有一些标记数据的参数,以下 ...
- 认识单文件组件.vue 文件
vuejs 自定义了一种.vue文件,可以把html, css, js 写到一个文件中,从而实现了对一个组件的封装, 一个.vue 文件就是一个单独的组件.由于.vue文件是自定义的,浏览器不认识,所 ...
- [转载]MyBatis mapper文件中的变量引用方式#{}与${}的差别
转载自:http://blog.csdn.net/szwangdf/article/details/26714603 默认情况下,使用#{}语法,MyBatis会产生PreparedStatement ...
- 18第一章 ASP.Net内建对象
第一章 ASP.Net内建对象 第一章 ASP.Net内建对象 ASP.Net为保持用户的数据和信息,内建了许多对象,包括Application.Response.Requ ...
- scikit-learn - 分类模型的评估 (classification_report)
使用说明 参数 sklearn.metrics.classification_report(y_true, y_pred, labels=None, target_names=None, sample ...
- Python之函数作业
Python之函数作业 爬页面 #爬虫页面,send一次爬一次 from urllib.request import urlopen def get(): while True: url = yiel ...
- [bzoj3668][Noi2014][起床困难综合症] (按位贪心)
Description 21 世纪,许多人得了一种奇怪的病:起床困难综合症,其临床表现为:起床难,起床后精神不佳.作为一名青春阳光好少年,atm 一直坚持与起床困难综合症作斗争.通过研究相关文献,他找 ...
- bzoj3262陌上花开 cdq分治入门题
Description 有n朵花,每朵花有三个属性:花形(s).颜色(c).气味(m),又三个整数表示.现要对每朵花评级,一朵花的级别是它拥有的美丽能超过的花的数量.定义一朵花A比另一朵花B要美丽,当 ...
- 关于zkfc与zkserver频繁断开的问题
详见http://blog.csdn.net/dslztx/article/details/51596951