Halloween treats
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 6631   Accepted: 2448   Special Judge

Description

Every year there is the same problem at Halloween: Each neighbour is only willing to give a certain total number of sweets on that day, no matter how many children call on him, so it may happen that a child will get nothing if it is too late. To avoid conflicts,
the children have decided they will put all sweets together and then divide them evenly among themselves. From last year's experience of Halloween they know how many sweets they get from each neighbour. Since they care more about justice than about the number
of sweets they get, they want to select a subset of the neighbours to visit, so that in sharing every child receives the same number of sweets. They will not be satisfied if they have any sweets left which cannot be divided.

Your job is to help the children and present a solution.

Input

The input contains several test cases.

The first line of each test case contains two integers c and n (1 ≤ c ≤ n ≤ 100000), the number of children and the number of neighbours, respectively. The next line contains n space
separated integers a1 , ... , an (1 ≤ ai ≤ 100000 ), where ai represents the number of sweets the children get if they visit
neighbour i.

The last test case is followed by two zeros.

Output

For each test case output one line with the indices of the neighbours the children should select (here, index i corresponds to neighbour i who gives a total number of ai sweets).
If there is no solution where each child gets at least one sweet print "no sweets" instead. Note that if there are several solutions where each child gets at least one sweet, you may print any of them.

Sample Input

4 5
1 2 3 7 5
3 6
7 11 2 5 13 17
0 0

Sample Output

3 5
2 3 4

Source

题意:给出c和n,接下来n个数,求随意的几个数的和为c的倍数,输出随意一组答案(注意是随意的)

抽屉原理: 放10个苹果到九个抽屉,最少有一个抽屉有大于1的苹果

这个题为什么说是抽屉原理呢?  你计算前n个数(一共同拥有n个和)的和mod  c ,由于n大于c,所以你推測会有多少个余数。

最多有 n个。即 0~n-1,而0是满足条件的,换而言之。这n个余数中要么有0,要么最少有两个同样的余数,

如今看两个余数同样的情况,比如   如果sum[1]%c==sum[n]%c  那么a[2]+a[3]+..+a[n]就是 c  的倍数。就说这么多了。

看代码吧:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define N 100005 int a[N];
int vis[N];
int c,n; int main()
{
int i;
while(~scanf("%d%d",&c,&n))
{
memset(vis,-1,sizeof(vis)); for(i=1;i<=n;i++)
{
scanf("%d",&a[i]);
} int temp=0,j; for(i=1;i<=n;i++)
{
temp+=a[i];
temp%=c; if(temp==0)
{
for(j=1;j<=i;j++)
if(j==1)
printf("%d",j);
else
printf(" %d",j); printf("\n");
break;
} if(vis[temp]!=-1)
{ for(j=vis[temp]+1;j<=i;j++)
if(i==j)
printf("%d",j);
else
printf("%d ",j); printf("\n"); break;
} vis[temp]=i;
} }
return 0;
}

POJ 3370 Halloween treats(抽屉原理)的更多相关文章

  1. POJ 3370. Halloween treats 抽屉原理 / 鸽巢原理

    Halloween treats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7644   Accepted: 2798 ...

  2. POJ 3370 Halloween treats(抽屉原理)

    Halloween treats Every year there is the same problem at Halloween: Each neighbour is only willing t ...

  3. POJ 3370 Halloween treats 鸽巢原理 解题

    Halloween treats 和POJ2356差点儿相同. 事实上这种数列能够有非常多,也能够有不连续的,只是利用鸽巢原理就是方便找到了连续的数列.并且有这种数列也必然能够找到. #include ...

  4. [POJ 3370] Halloween treats

    Halloween treats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7143   Accepted: 2641 ...

  5. uva 11237 - Halloween treats(抽屉原理)

    版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/u011328934/article/details/37612503 题目链接:uva 11237 ...

  6. POJ 3370 Halloween treats( 鸽巢原理简单题 )

    链接:传送门 题意:万圣节到了,有 c 个小朋友向 n 个住户要糖果,根据以往的经验,第i个住户会给他们a[ i ]颗糖果,但是为了和谐起见,小朋友们决定要来的糖果要能平分,所以他们只会选择一部分住户 ...

  7. poj 3370 Halloween treats(鸽巢原理)

    Description Every year there is the same problem at Halloween: Each neighbour is only willing to giv ...

  8. 鸽巢原理应用-分糖果 POJ 3370 Halloween treats

    基本原理:n+1只鸽子飞回n个鸽笼至少有一个鸽笼含有不少于2只的鸽子. 很简单,应用却也很多,很巧妙,看例题: Description Every year there is the same pro ...

  9. UVA 11237 - Halloween treats(鸽笼原理)

    11237 - Halloween treats option=com_onlinejudge&Itemid=8&page=show_problem&category=516& ...

随机推荐

  1. Sass的的使用一

    sass -v 检测是否安装 Sass 成功 gem update sass 更新 Sass gem uninstall sass 删除/卸载 Sass 的编译有多种方法: 1.命令编译2.GUI工具 ...

  2. C++ 继承/派生、访问属性、构造函数

    1.子类继承父类的继承方式:public,private,protected,不写则默认为private: 2.子类会继承父类的全部成员(除了构造函数.析构函数,虽然析构函数有virtual,但是不是 ...

  3. python学习(day2)

    1.常用数据类型及内置方法 1.列表(list) 定义:在中括号[]内存放任意多个值,用逗号隔开. 具体函数和内置方法如下: #定义学生列表,可存放多个学生 students=['a','b','c' ...

  4. C#委托与事件的关系(转载)

    1.C#中的事件和委托的作用?事件代表一个组件能够被关注的一种信号,比如你的大肠会向你发出想拉屎的信号,你就可以接收到上厕所.委托是可以把一个过程封装成变量进行传递并且执行的对象,比如你上蹲坑和上坐马 ...

  5. sqlite3接口简要说明

    本文介绍一下SQLite C/C++接口. 早期的SQLite C/C++接口只有5个接口函数, 很容易学习. 新版本的SQLite新增了很多功能, 目前大概有185个API接口.本文介绍一些核心的A ...

  6. IDEA基本使用及配置(2)

    IDEA配置:File >> Setiings进入配置界面 1.主题配置:默认两种主题,黑色.白色,可以自己在网上下载,然后File >> Import Setiings导入, ...

  7. 性能测试培训day1

    测试本质: 1构造测试数据和期望结果 2执行 3验证 自动化测试: 写完代码,单元测试测代码逻辑,单元测试搞清楚代码逻辑就行了(白盒测试)先静态,运行前用工具扫描BUG例如(a==11写成a=11), ...

  8. Centos6 安装nginx

    一.编译安装nginx 1.安装nginx所需要的库pcre,pcre的全称为:perl compatible regular expression即perl正则表达式,是为了使nginx具备URL重 ...

  9. c++基础_杨辉三角形

    #include <iostream> using namespace std; int main(){ int n; cin>>n; ][]; ;i<n;i++){ a ...

  10. (九)python3 列表生成式

    列表生成式即 List Comprehensions,是 Python 内置的非常简单却强大的可以用来创建 list 的生成式. 要生成 list [1, 2, 3, 4, 5, 6, 7, 8, 9 ...