Python之机器学习-朴素贝叶斯(垃圾邮件分类)
朴素贝叶斯(垃圾邮件分类)
邮箱训练集下载地址
邮箱训练集可以加我微信:a1171958281
模块导入
import re
import os
from jieba import cut
from itertools import chain
from collections import Counter
import numpy as np
from sklearn.naive_bayes import MultinomialNB
文本预处理
def get_words(filename):
"""读取文本并过滤无效字符和长度为1的词"""
words = []
with open(filename, 'r', encoding='utf-8') as fr:
for line in fr:
line = line.strip()
# 过滤无效字符
line = re.sub(r'[.【】0-9、——。,!~\*]', '', line)
# 使用jieba.cut()方法对文本切词处理
line = cut(line)
# 过滤长度为1的词
line = filter(lambda word: len(word) > 1, line)
words.extend(line)
return words
遍历邮件
all_words = []
def get_top_words(top_num):
"""遍历邮件建立词库后返回出现次数最多的词"""
filename_list = ['邮件_files/{}.txt'.format(i) for i in range(151)]
# 遍历邮件建立词库
for filename in filename_list:
all_words.append(get_words(filename))
# itertools.chain()把all_words内的所有列表组合成一个列表
# collections.Counter()统计词个数
freq = Counter(chain(*all_words))
return [i[0] for i in freq.most_common(top_num)]
top_words = get_top_words(100)
# 构建词-个数映射表
vector = []
for words in all_words:
'''
words:
['国际', 'SCI', '期刊', '材料', '结构力学', '工程', '杂志', '国际', 'SCI', '期刊', '先进', '材料科学',
'材料', '工程', '杂志', '国际', 'SCI', '期刊', '图像处理', '模式识别', '人工智能', '工程', '杂志', '国际',
'SCI', '期刊', '数据', '信息', '科学杂志', '国际', 'SCI', '期刊', '机器', '学习', '神经网络', '人工智能',
'杂志', '国际', 'SCI', '期刊', '能源', '环境', '生态', '温度', '管理', '结合', '信息学', '杂志', '期刊',
'网址', '论文', '篇幅', '控制', '以上', '英文', '字数', '以上', '文章', '撰写', '语言', '英语', '论文',
'研究', '内容', '详实', '方法', '正确', '理论性', '实践性', '科学性', '前沿性', '投稿', '初稿', '需要',
'排版', '录用', '提供', '模版', '排版', '写作', '要求', '正规', '期刊', '正规', '操作', '大牛', '出版社',
'期刊', '期刊', '质量', '放心', '检索', '稳定', '邀请函', '推荐', '身边', '老师', '朋友', '打扰', '请谅解']
'''
word_map = list(map(lambda word: words.count(word), top_words))
'''
word_map:
[0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
'''
vector.append(word_map)
训练模型
vector = np.array(vector)
# 0-126.txt为垃圾邮件标记为1;127-151.txt为普通邮件标记为0
labels = np.array([1]*127 + [0]*24)
model = MultinomialNB()
model.fit(vector, labels)
测试模型
def predict(filename):
"""对未知邮件分类"""
# 构建未知邮件的词向量
words = get_words(filename)
current_vector = np.array(
tuple(map(lambda word: words.count(word), top_words)))
# 预测结果
result = model.predict(current_vector.reshape(1, -1))
return '**垃圾邮件**' if result == 1 else '普通邮件'
print('151.txt分类情况:{}'.format(predict('邮件_files/151.txt')))
print('152.txt分类情况:{}'.format(predict('邮件_files/152.txt')))
print('153.txt分类情况:{}'.format(predict('邮件_files/153.txt')))
print('154.txt分类情况:{}'.format(predict('邮件_files/154.txt')))
print('155.txt分类情况:{}'.format(predict('邮件_files/155.txt')))
Python之机器学习-朴素贝叶斯(垃圾邮件分类)的更多相关文章
- Python实现nb(朴素贝叶斯)
Python实现nb(朴素贝叶斯) 运行环境 Pyhton3 numpy科学计算模块 计算过程 st=>start: 开始 op1=>operation: 读入数据 op2=>ope ...
- NLP系列(2)_用朴素贝叶斯进行文本分类(上)
作者:龙心尘 && 寒小阳 时间:2016年1月. 出处: http://blog.csdn.net/longxinchen_ml/article/details/50597149 h ...
- spark 机器学习 朴素贝叶斯 实现(二)
已知10月份10-22日网球场地,会员打球情况通过朴素贝叶斯算法,预测23,24号是否适合打网球.结果,日期,天气 温度 风速结果(0否,1是)天气(0晴天,1阴天,2下雨)温度(0热,1舒适,2冷) ...
- spark 机器学习 朴素贝叶斯 原理(一)
朴素贝叶斯算法仍然是流行的挖掘算法之一,该算法是有监督的学习算法,解决的是分类问题,如客户是否流失.是否值得投资.信用等级评定等多分类问题.该算法的优点在于简单易懂.学习效率高.在某些领域的分类问题中 ...
- 机器学习---朴素贝叶斯与逻辑回归的区别(Machine Learning Naive Bayes Logistic Regression Difference)
朴素贝叶斯与逻辑回归的区别: 朴素贝叶斯 逻辑回归 生成模型(Generative model) 判别模型(Discriminative model) 对特征x和目标y的联合分布P(x,y)建模,使用 ...
- 机器学习朴素贝叶斯 SVC对新闻文本进行分类
朴素贝叶斯分类器模型(Naive Bayles) Model basic introduction: 朴素贝叶斯分类器是通过数学家贝叶斯的贝叶斯理论构造的,下面先简单介绍贝叶斯的几个公式: 先验概率: ...
- Python实现 利用朴素贝叶斯模型(NBC)进行问句意图分类
目录 朴素贝叶斯分类(NBC) 程序简介 分类流程 字典(dict)构造:用于jieba分词和槽值替换 数据集构建 代码分析 另外:点击右下角魔法阵上的[显示目录],可以导航~~ 朴素贝叶斯分类(NB ...
- NLP系列(3)_用朴素贝叶斯进行文本分类(下)
作者: 龙心尘 && 寒小阳 时间:2016年2月. 出处: http://blog.csdn.net/longxinchen_ml/article/details/50629110 ...
- 机器学习入门-贝叶斯中文新闻分类任务 1. .map(做标签数字替换) 2.CountVectorizer(词频向量映射) 3.TfidfVectorizer(TFDIF向量映射) 4.MultinomialNB()贝叶斯模型构建
1.map做一个标签的数字替换 2.vec = CountVectorizer(lowercase=False, max_features=4000) # 从sklean.extract_featu ...
随机推荐
- bzoj 3144 [Hnoi2013]切糕【最小割+dinic】
都说了是'切'糕所以是最小割咯 建图: 每个点向下一层连容量为这个点的val的边,S向第一层连容量为inf的边,最后一层向T连容量为自身val的边,即割断这条边相当于\( f(i,j) \)选择了当前 ...
- app 后台程序设计
限制客户端一分钟之内访问接口的次数 1.设备的唯一标识获取这个实际上IOS7后会存在问题,权限已经收回了,android可以2.唯一标识可以通过生成一个token区分3.每分钟的频率可以这样设置 ke ...
- JQuery模板插件-jquery.tmpl
转载:https://www.cnblogs.com/whitewolf/archive/2011/10/09/2204185.html 在下面介绍一款jQuery的模板插件 tmpl,是由微软想jQ ...
- Python上下文管理器(Context managers)
上下文管理器(Context managers) 上下文管理器允许你在有需要的时候,精确地分配和释放资源. 使用上下文管理器最广泛的案例就是with语句了.想象下你有两个需要结对执行的相关操作,然后还 ...
- poj 1664 放苹果 递归
题目链接: http://poj.org/problem?id=1664 题目描述: 有n个苹果,m个盒子,盒子和苹果都没有顺序,盒子可以为空,问:有多少种放置方式? 解题思路: 当前有n个苹果,m个 ...
- linux自动连接校园网设置
不知道有没有人用linux的时候碰到过校园网连接后,跳不出登录界面,即使手动输入也没有作用.写一个可能可行的方法: - 首先打开控制面板 选择网络代理 将代理中的选项设置为 估计现在就能自动弹出登录页 ...
- Frequency of String CodeForces - 963D
http://codeforces.com/contest/963/problem/D 题解:https://www.cnblogs.com/Blue233333/p/8881614.html 记M为 ...
- sed与正则表达式
行的开头(^) ^匹配每一行的开头 [root@sishen ~]# sed -n '/^103/ p ' employee.txt 103,Raj Reddy,Sysadmin 只有^出现在正则表达 ...
- solr 6.0 没有schema.xml未自动创建schema文件
solr 6.0 没有schema.xml未自动创建schema文件 摘要:在之前的Solr版本中(Solr5之前),在创建core的时候,Solr会自动创建好schema.xml,但是在之后的版本中 ...
- 死磕 java集合之终结篇
概览 我们先来看一看java中所有集合的类关系图. 这里面的类太多了,请放大看,如果放大还看不清,请再放大看,如果还是看不清,请放弃. 我们下面主要分成五个部分来逐个击破. List List中的元素 ...