[LUOGU] P1466 集合 Subset Sums
题目描述
对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合,且保证每个集合的数字和是相等的。举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,每个子集合的所有数字和是相等的:
{3} 和 {1,2}
这是唯一一种分法(交换集合位置被认为是同一种划分方案,因此不会增加划分方案总数) 如果N=7,有四种方法能划分集合{1,2,3,4,5,6,7},每一种分法的子集合各数字和是相等的:
{1,6,7} 和 {2,3,4,5} {注 1+6+7=2+3+4+5}
{2,5,7} 和 {1,3,4,6}
{3,4,7} 和 {1,2,5,6}
{1,2,4,7} 和 {3,5,6}
给出N,你的程序应该输出划分方案总数,如果不存在这样的划分方案,则输出0。程序不能预存结果直接输出(不能打表)。
输入输出格式
输入格式:
输入文件只有一行,且只有一个整数N
输出格式:
输出划分方案总数,如果不存在则输出0。
输入输出样例
输入样例#1:
7
输出样例#1:
4
说明
翻译来自NOCOW
USACO 2.2
第一反应是(n+1)/2,但仔细一想显然不对。
考虑什么情况不能分开,因为一定是分成两部分,所以当Si%2!=0时,就出问题了。
Si正好是三角形数,等于n(n+1)/2。
判断了不行的情况,再看行的情况。
由于是分成两块,所以每块大小一定是Si/2。
这正是一个背包模型,物品大小为1,2,3,…,n,背包容量为Si/2,跑一次背包计数即可。
#include<iostream>
#include<cstdio>
using namespace std;
int n;
long long f[400];
int main()
{
cin>>n;
if((n*(n+1))%4!=0) return cout<<0,0;
int V=(n*(n+1))/4;
f[0]=1;
for(int i=1;i<=n;i++){
for(int j=V;j>=0;j--){
int p=j-i;
if(p<0) break;
f[j]+=f[p];
}
}
cout<<f[V]/2;
}
[LUOGU] P1466 集合 Subset Sums的更多相关文章
- DP | Luogu P1466 集合 Subset Sums
题面:P1466 集合 Subset Sums 题解: dpsum=N*(N+1)/2;模型转化为求选若干个数,填满sum/2的空间的方案数,就是背包啦显然如果sum%2!=0是没有答案的,就特判掉F ...
- 洛谷P1466 集合 Subset Sums
P1466 集合 Subset Sums 162通过 308提交 题目提供者该用户不存在 标签USACO 难度普及/提高- 提交 讨论 题解 最新讨论 暂时没有讨论 题目描述 对于从1到N (1 ...
- 洛谷 P1466 集合 Subset Sums Label:DP
题目描述 对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合,且保证每个集合的数字和是相等的.举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,每个子 ...
- P1466 集合 Subset Sums(01背包求填充方案数)
题目链接:https://www.luogu.org/problem/show?pid=1466 题目大意:对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合, ...
- P1466 集合 Subset Sums 搜索+递推+背包三种做法
题目描述 对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合,且保证每个集合的数字和是相等的.举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,每个子 ...
- 题解【洛谷 P1466 [USACO2.2]集合 Subset Sums】
题目传送门 设 \(sum=1+2+3+4+\dots+n=\dfrac{n(n+1)}{2}\). 如果 \(2\nmid sum\),则显然没有方案. 如果 \(2\mid sum\),则这两个集 ...
- 洛谷P1466 集合 Subset Sums_01背包水题
不多解释,适当刷刷水… Code: #include<cstdio> #include<algorithm> using namespace std; const int ma ...
- Project Euler 106:Special subset sums: meta-testing 特殊的子集和:元检验
Special subset sums: meta-testing Let S(A) represent the sum of elements in set A of size n. We shal ...
- Project Euler P105:Special subset sums: testing 特殊的子集和 检验
Special subset sums: testing Let S(A) represent the sum of elements in set A of size n. We shall cal ...
随机推荐
- bzoj 4071: [Apio2015]巴邻旁之桥【splay】
用权值线段树会容易一些并快一些,但是想复健一下splay所以打了splay 然后果然不会打了. 解题思路: 首先把家和办公室在同一侧的提出来直接加进答案里: 对于k=1,直接选所有办公室和家的中位数即 ...
- UVA1437 String painter
传送门 我们先考虑从一个空白串变成\(B\),这样的话用区间dp,区间dp,设\(f[l][r]\)表示区间\((l,r)\)的最小次数,当\(l==r\)时为\(1\),当\(s[l]==s[r]\ ...
- oracle数据库当前用户下所有表名和表名的注释
select a.TABLE_NAME,b.COMMENTSfrom user_tables a,user_tab_comments bWHERE a.TABLE_NAME=b.TABLE_NAMEo ...
- macbook 快捷键 home ...
home和end是fn+左右,ctrl+home和end是fn+cmd+左右
- BZOJ2333 棘手的操作
Description 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i],接下来有如下一些操作: U x y: 加一条边,连接第x个节点和第y个节点 A1 x ...
- ACM经历与感悟合集
ACM经历与感悟合集 ACM起步要点总结(转哈工大) ACM 荣耀之路-学习方法 ACM感悟 一位ACMer过来人的心得 ACM经历总结 大学ACM的总结 ACM大牛的退役贴 各大牛退役总结帖 女生应 ...
- Android偏好设置(2)为应用定义一个偏好设置xml
1.Defining Preferences in XML Although you can instantiate new Preference objects at runtime, you sh ...
- 【Java】包装类型
Java中的基本类型功能简单,不具备对象的特性,为了使基本类型具备对象的特性,所以出现了包装类,就可以像操作对象一样操作基本类型数据. 一.基本类型对应的包装类 基本类型 ...
- CF949A/950C Zebras
思路: 贪心乱搞. 实现: #include <bits/stdc++.h> using namespace std; vector<vector<int>> v; ...
- HTML中的那些bug
1.语法检测时提示有多余的结束标签 <!doctype html> <html> <head> <meta charset="utf-8" ...