题目描述
对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合,且保证每个集合的数字和是相等的。举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,每个子集合的所有数字和是相等的: {3} 和 {1,2} 这是唯一一种分法(交换集合位置被认为是同一种划分方案,因此不会增加划分方案总数) 如果N=7,有四种方法能划分集合{1,2,3,4,5,6,7},每一种分法的子集合各数字和是相等的: {1,6,7} 和 {2,3,4,5} {注 1+6+7=2+3+4+5}
{2,5,7} 和 {1,3,4,6}
{3,4,7} 和 {1,2,5,6}
{1,2,4,7} 和 {3,5,6}
给出N,你的程序应该输出划分方案总数,如果不存在这样的划分方案,则输出0。程序不能预存结果直接输出(不能打表)。
输入输出格式
输入格式:
输入文件只有一行,且只有一个整数N 输出格式:
输出划分方案总数,如果不存在则输出0。 输入输出样例
输入样例#1:
7
输出样例#1:
4
说明
翻译来自NOCOW USACO 2.2

第一反应是(n+1)/2,但仔细一想显然不对。

考虑什么情况不能分开,因为一定是分成两部分,所以当Si%2!=0时,就出问题了。

Si正好是三角形数,等于n(n+1)/2。

判断了不行的情况,再看行的情况。

由于是分成两块,所以每块大小一定是Si/2。

这正是一个背包模型,物品大小为1,2,3,…,n,背包容量为Si/2,跑一次背包计数即可。

#include<iostream>
#include<cstdio> using namespace std; int n;
long long f[400]; int main()
{
cin>>n;
if((n*(n+1))%4!=0) return cout<<0,0;
int V=(n*(n+1))/4;
f[0]=1;
for(int i=1;i<=n;i++){
for(int j=V;j>=0;j--){
int p=j-i;
if(p<0) break;
f[j]+=f[p];
}
}
cout<<f[V]/2;
}

[LUOGU] P1466 集合 Subset Sums的更多相关文章

  1. DP | Luogu P1466 集合 Subset Sums

    题面:P1466 集合 Subset Sums 题解: dpsum=N*(N+1)/2;模型转化为求选若干个数,填满sum/2的空间的方案数,就是背包啦显然如果sum%2!=0是没有答案的,就特判掉F ...

  2. 洛谷P1466 集合 Subset Sums

    P1466 集合 Subset Sums 162通过 308提交 题目提供者该用户不存在 标签USACO 难度普及/提高- 提交  讨论  题解 最新讨论 暂时没有讨论 题目描述 对于从1到N (1 ...

  3. 洛谷 P1466 集合 Subset Sums Label:DP

    题目描述 对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合,且保证每个集合的数字和是相等的.举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,每个子 ...

  4. P1466 集合 Subset Sums(01背包求填充方案数)

    题目链接:https://www.luogu.org/problem/show?pid=1466 题目大意:对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合, ...

  5. P1466 集合 Subset Sums 搜索+递推+背包三种做法

    题目描述 对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合,且保证每个集合的数字和是相等的.举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,每个子 ...

  6. 题解【洛谷 P1466 [USACO2.2]集合 Subset Sums】

    题目传送门 设 \(sum=1+2+3+4+\dots+n=\dfrac{n(n+1)}{2}\). 如果 \(2\nmid sum\),则显然没有方案. 如果 \(2\mid sum\),则这两个集 ...

  7. 洛谷P1466 集合 Subset Sums_01背包水题

    不多解释,适当刷刷水… Code: #include<cstdio> #include<algorithm> using namespace std; const int ma ...

  8. Project Euler 106:Special subset sums: meta-testing 特殊的子集和:元检验

    Special subset sums: meta-testing Let S(A) represent the sum of elements in set A of size n. We shal ...

  9. Project Euler P105:Special subset sums: testing 特殊的子集和 检验

    Special subset sums: testing Let S(A) represent the sum of elements in set A of size n. We shall cal ...

随机推荐

  1. Git学习二

    一.在工作区和暂存区退回 在工作区: $git checkout -- filename 在暂存区: $git reset HEAD filename $git checkout -- filenam ...

  2. bzoj 1911: [Apio2010]特别行动队【斜率优化dp】

    仔细想想好像没学过斜率优化.. 很容易推出状态转移方程\( f[i]=max{f[j]+a(s[i]-s[j])^2+b(s[i]-s[j])+c} \) 然后考虑j的选取,如果选j优于选k,那么: ...

  3. poj 3130 How I Mathematician Wonder What You Are! 【半平面交】

    求多边形的核,直接把所有边求半平面交判断有无即可 #include<iostream> #include<cstdio> #include<algorithm> # ...

  4. CCF2016.4 - A题

    思路:枚举每个点,看看它是否同时小于/大于前一个点和后一个点 import java.util.Scanner; public class Main { public static void main ...

  5. springboot(七) 配置嵌入式Servlet容器

    github代码地址:https://github.com/showkawa/springBoot_2017/tree/master/spb-demo/spb-brian-query-service ...

  6. 整体二分例题:POI2011Meteors——Chemist

    题目地址:https://www.luogu.org/problemnew/show/P3527#sub 首先这个答案不是操作几次下了几场陨石雨之后的陨石个数,无法在线做,考虑离线做法.暴力的想法就是 ...

  7. 团队作业-项目Alpha版本发布

    一. 这个作业属于哪个课程 https://edu.cnblogs.com/campus/xnsy/SoftwareEngineeringClass2 这个作业要求在哪里 https://edu.cn ...

  8. logstash | logstash && logstash-input-jdbc 安装

    Windows系统:          1.安装Logstash  1.1 进入官网下载zip包                  [1]  https://artifacts.elastic.co/ ...

  9. _bzoj1500 [NOI2005]维修数列【真·Splay】

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1500 注意MAX-SUM的时候,不可以是空串. #include <cstdio> ...

  10. 51nod1127 最短的包含字符串 尺取法

    Bryce1010模板 #include <bits/stdc++.h> using namespace std; typedef long long LL; map<char,LL ...