bzoj 3261 最大异或和【可持久化trie】
因为在后面加数字又求后缀和太麻烦,所以xor[p...n]=xor[1...n]^xor[p-1...n]。
首先处理出来区间异或前缀和,对前缀和建trie树(在最前面放一棵0表示最开始的前缀和
然后就是可持久化trie的板子了
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=;
int n,m,a[N],b[N],rt[N],cnt;
char c[];
struct qwe
{
int c[],sum;
}t[N*];
int read()
{
int r=;
char p=getchar();
while(p>''||p<'')
p=getchar();
while(p>=''&&p<='')
{
r=r*+p-;
p=getchar();
}
return r;
}
int add(int x,int v)
{
int tmp=++cnt,y=cnt;
for(int i=;i>=;i--)
{
t[y].c[]=t[x].c[];
t[y].c[]=t[x].c[];
t[y].sum=t[x].sum+;
int q=(v&(<<i))>>i;
x=t[x].c[q];
t[y].c[q]=++cnt;
y=t[y].c[q];
}
t[y].sum=t[x].sum+;
return tmp;
}
int ques(int l,int r,int v)
{
int re=;
for(int i=;i>=;i--)
{
int q=(v&(<<i))>>i;
if(t[t[r].c[q^]].sum-t[t[l].c[q^]].sum)
re+=(<<i),l=t[l].c[q^],r=t[r].c[q^];
else
l=t[l].c[q],r=t[r].c[q];
}
return re;
}
int main()
{
n=read(),m=read();
n++;
for(int i=;i<=n;i++)
a[i]=read();
for(int i=;i<=n;i++)
b[i]=b[i-]^a[i];
for(int i=;i<=n;i++)
rt[i]=add(rt[i-],b[i]);
while(m--)
{
scanf("%s",c);
if(c[]=='A')
{
a[++n]=read();
b[n]=b[n-]^a[n];
rt[n]=add(rt[n-],b[n]);
}
else
{
int l=read(),r=read(),x=read();
printf("%d\n",ques(rt[l-],rt[r],b[n]^x));
}
}
return ;
}
/*
5 5
2 6 4 3 6
A 1
Q 3 5 4
A 4
Q 5 7 0
Q 3 6 6
*/
bzoj 3261 最大异或和【可持久化trie】的更多相关文章
- BZOJ 3261: 最大异或和( 可持久化trie )
搞成前缀和然后就可以很方便地用可持久化trie维护了.时间复杂度O((N+M)*25) -------------------------------------------------------- ...
- BZOJ 3261 最大异或和 可持久化Trie树
题目大意:给定一个序列,提供下列操作: 1.在数组结尾插入一个数 2.给定l,r,x,求一个l<=p<=r,使x^a[p]^a[p+1]^...^a[n]最大 首先我们能够维护前缀和 然后 ...
- bzoj 3261 最大异或和 可持久化字典树(01树)
题目传送门 思路: 由异或的性质可得,题目要求的式子可以转化成求$max(pre[n]^x^pre[i])$,$pre[i]$表示前缀异或和,那么我们现在就要求出这个东西,所以用可持久化字典树来求,每 ...
- BZOJ 3261 最大异或和 (可持久化01Trie)
题目大意:让你维护一个序列,支持在序列末插入一个数,支持询问$[l,r]$区间内选择一个位置$p$,使$xor\sum_{i=p}^{n}a_{i}$最大 可持久化$01Trie$裸题,把 区间异或和 ...
- bzoj 3261: 最大异或和 (可持久化trie树)
3261: 最大异或和 Time Limit: 10 Sec Memory Limit: 512 MB Description 给定一个非负整数序列 {a},初始长度为 N. ...
- BZOJ 3261: 最大异或和位置-贪心+可持久化01Trie树
3261: 最大异或和 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 3519 Solved: 1493[Submit][Status][Discu ...
- BZOJ 3261: 最大异或和
Description 一个序列,支持两个操作. 1.在序列尾加入一个数. 2.询问 [l,r] 中与 x 异或值最大的数. \(n\leqslant 3*10^5\) Sol 可持久化 Trie 树 ...
- BZOJ 3261 最大异或和(算竞进阶习题)
可持久化Trie 需要知道一个异或的特点,和前缀和差不多 a[p] xor a[p+1] xor....xor a[n] xor x = a[p-1] xor a[n] xor x 所以我们把a[1. ...
- BZOJ 4103: [Thu Summer Camp 2015]异或运算 可持久化trie
开始想了一个二分+可持久化trie验证,比正解多一个 log 仔细思考,你发现你可以直接按位枚举,然后在可持久化 trie 上二分就好了. code: #include <bits/stdc++ ...
随机推荐
- UVa567_Risk(最短路)(小白书图论专题)
解题报告 option=com_onlinejudge&Itemid=8&category=7&page=show_problem&problem=508"& ...
- 常用linux系统监控命令
一.内存监控 监控内存的使用状态是非常重要的,通过监控有助于了解内存的使用状态,比如内存占用是否正常,内存是否紧缺等等,监控内存最常使用的命令有free.vmstat.top等 1.1 free $ ...
- v-on指令
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- [网页游戏开发]容器的使用及自定义Tab,RadioGroup,List,ViewStack
Morn里面,容器和其他普通组件不同,无需皮肤,所以也不能从组件树种拖动创建(Tab,RadioGroup例外),只能转换而来 Morn的容器组件主要有Box,Container,Panel,Tab, ...
- 距特征之k阶距概念
k阶原点距和k阶中心距各是说明什么数字特征 http://www.cnblogs.com/emanlee/archive/2011/04/25/2028628.html 二阶中心距,也叫作方差,它告诉 ...
- LeetCode题解(13)--Roman to Integer
https://leetcode.com/problems/roman-to-integer/ 原题: Given a roman numeral, convert it to an integer. ...
- ios如何获取手机的网络状态和运营商名称
本文转载至 http://blog.csdn.net/justinjing0612/article/details/38313747 以前获取手机的网络状态和运营商名称都是似有API, 现在我们可以大 ...
- Class.forName("java.lang.String")的作用?
返回字节码: 返回的方式有2种: 第一种是这个类的字节码已经加载到内存里面来了,现在想要取到它的字节码,我直接找到那份字节码把他返回: 第二种是我去得到这个类的字节码,结果在虚拟机里面还没有这个类的字 ...
- Immutable学习及 React 中的实践
为什么用immutable.js呢.有了immutable.js可以大大提升react的性能. JavaScript 中的对象一般是可变的(Mutable),因为使用了引用赋值,新的对象简单的引用了原 ...
- Linux监控命令
dd命令用指定大小的块拷贝一个文件,并在拷贝的同时进行指定的转换.注意:指定数字的地方若以下列字符结尾,则乘以相应的数字:b=512:c=1:k=1024:w=2它不是一个专业的测试工具,不过如果对于 ...