因为在后面加数字又求后缀和太麻烦,所以xor[p...n]=xor[1...n]^xor[p-1...n]。

首先处理出来区间异或前缀和,对前缀和建trie树(在最前面放一棵0表示最开始的前缀和

然后就是可持久化trie的板子了

 #include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=;
int n,m,a[N],b[N],rt[N],cnt;
char c[];
struct qwe
{
int c[],sum;
}t[N*];
int read()
{
int r=;
char p=getchar();
while(p>''||p<'')
p=getchar();
while(p>=''&&p<='')
{
r=r*+p-;
p=getchar();
}
return r;
}
int add(int x,int v)
{
int tmp=++cnt,y=cnt;
for(int i=;i>=;i--)
{
t[y].c[]=t[x].c[];
t[y].c[]=t[x].c[];
t[y].sum=t[x].sum+;
int q=(v&(<<i))>>i;
x=t[x].c[q];
t[y].c[q]=++cnt;
y=t[y].c[q];
}
t[y].sum=t[x].sum+;
return tmp;
}
int ques(int l,int r,int v)
{
int re=;
for(int i=;i>=;i--)
{
int q=(v&(<<i))>>i;
if(t[t[r].c[q^]].sum-t[t[l].c[q^]].sum)
re+=(<<i),l=t[l].c[q^],r=t[r].c[q^];
else
l=t[l].c[q],r=t[r].c[q];
}
return re;
}
int main()
{
n=read(),m=read();
n++;
for(int i=;i<=n;i++)
a[i]=read();
for(int i=;i<=n;i++)
b[i]=b[i-]^a[i];
for(int i=;i<=n;i++)
rt[i]=add(rt[i-],b[i]);
while(m--)
{
scanf("%s",c);
if(c[]=='A')
{
a[++n]=read();
b[n]=b[n-]^a[n];
rt[n]=add(rt[n-],b[n]);
}
else
{
int l=read(),r=read(),x=read();
printf("%d\n",ques(rt[l-],rt[r],b[n]^x));
}
}
return ;
}
/*
5 5
2 6 4 3 6
A 1
Q 3 5 4
A 4
Q 5 7 0
Q 3 6 6
*/

bzoj 3261 最大异或和【可持久化trie】的更多相关文章

  1. BZOJ 3261: 最大异或和( 可持久化trie )

    搞成前缀和然后就可以很方便地用可持久化trie维护了.时间复杂度O((N+M)*25) -------------------------------------------------------- ...

  2. BZOJ 3261 最大异或和 可持久化Trie树

    题目大意:给定一个序列,提供下列操作: 1.在数组结尾插入一个数 2.给定l,r,x,求一个l<=p<=r,使x^a[p]^a[p+1]^...^a[n]最大 首先我们能够维护前缀和 然后 ...

  3. bzoj 3261 最大异或和 可持久化字典树(01树)

    题目传送门 思路: 由异或的性质可得,题目要求的式子可以转化成求$max(pre[n]^x^pre[i])$,$pre[i]$表示前缀异或和,那么我们现在就要求出这个东西,所以用可持久化字典树来求,每 ...

  4. BZOJ 3261 最大异或和 (可持久化01Trie)

    题目大意:让你维护一个序列,支持在序列末插入一个数,支持询问$[l,r]$区间内选择一个位置$p$,使$xor\sum_{i=p}^{n}a_{i}$最大 可持久化$01Trie$裸题,把 区间异或和 ...

  5. bzoj 3261: 最大异或和 (可持久化trie树)

    3261: 最大异或和 Time Limit: 10 Sec  Memory Limit: 512 MB Description       给定一个非负整数序列 {a},初始长度为 N.       ...

  6. BZOJ 3261: 最大异或和位置-贪心+可持久化01Trie树

    3261: 最大异或和 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 3519  Solved: 1493[Submit][Status][Discu ...

  7. BZOJ 3261: 最大异或和

    Description 一个序列,支持两个操作. 1.在序列尾加入一个数. 2.询问 [l,r] 中与 x 异或值最大的数. \(n\leqslant 3*10^5\) Sol 可持久化 Trie 树 ...

  8. BZOJ 3261 最大异或和(算竞进阶习题)

    可持久化Trie 需要知道一个异或的特点,和前缀和差不多 a[p] xor a[p+1] xor....xor a[n] xor x = a[p-1] xor a[n] xor x 所以我们把a[1. ...

  9. BZOJ 4103: [Thu Summer Camp 2015]异或运算 可持久化trie

    开始想了一个二分+可持久化trie验证,比正解多一个 log 仔细思考,你发现你可以直接按位枚举,然后在可持久化 trie 上二分就好了. code: #include <bits/stdc++ ...

随机推荐

  1. struts开发&lt;在eclipse中配置struts. 一&gt;

    1.获取struts的jar包 1.1首先在http://struts.apache.org/download.cgi#struts23163这里下载 struts的文件包(选择struts-2.3. ...

  2. cocos2dx 3.0打包android遇到的错误(持续更新)

    1.编译时遇到找不到文件的错误:比如fatal error: cocos-ext.h: No such file or directory    , fatal error: CocosGUI.h: ...

  3. Spark Streaming性能优化系列-怎样获得和持续使用足够的集群计算资源?

    一:数据峰值的巨大影响 1. 数据确实不稳定,比如晚上的时候訪问流量特别大 2. 在处理的时候比如GC的时候耽误时间会产生delay延迟 二:Backpressure:数据的反压机制 基本思想:依据上 ...

  4. Jupyter notebook 使用Turorial

    The cell magics in IPython http://nbviewer.jupyter.org/github/ipython/ipython/blob/1.x/examples/note ...

  5. Codeforces Round #335 (Div. 2) 606B Testing Robots(模拟)

    B. Testing Robots time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  6. 使用$.when()解决AJAX异步难题之:多个ajax操作进行逻辑与(and)

    上一篇文章"JQuery.deferred提供的promise解决方式",提到了javascript异步操作的3个问题,以及javascript Promise入门.如今我们看下怎 ...

  7. testng 工程报错java.net.SocketException

    报错如下: java.net.SocketException: Software caused connection abort: socket write error at java.net.Soc ...

  8. 对FreeMarker技术的思考

    依照静态非静态来划分网页分为两种:静态网页和非静态网页,究其优缺点而言,静态网页在用户訪问的时候响应快,可是因为里面的数据是写死的.所以致命的缺陷就是数据不能动态显示.非静态页面(如jsp)数据能够动 ...

  9. spring MVC (学习笔记)

    web.xml 相关配置 <?xml version="1.0" encoding="UTF-8"?><web-app xmlns=" ...

  10. mysql 免安装配置问题

    摘要: MySQL是一个小型关系型数据库管理系统,MySQL被广泛地应用在Internet上的中小型网站中.由于其体积小.速度快.总体拥有成本低,尤其是开放源码这一特点,许多中小型网站为了降低网站总体 ...