【Luogu4781】【模板】拉格朗日插值
【Luogu4781】【模板】拉格朗日插值
题面
题解
套个公式就好
#include<cstdio>
#define ll long long
#define MOD 998244353
#define MAX 2020
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,K,x[MAX],y[MAX],ans;
int fpow(int a,int b)
{
int s=1;
while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}
return s;
}
int main()
{
n=read()-1;K=read();
for(int i=0;i<=n;++i)x[i]=read(),y[i]=read();
for(int i=0;i<=n;++i)
{
int tmp=1;
for(int j=0;j<=n;++j)
if(i!=j)tmp=1ll*tmp*(K-x[j])%MOD*fpow(x[i]-x[j],MOD-2)%MOD;
ans=(ans+1ll*y[i]*tmp)%MOD;
}
ans=(ans+MOD)%MOD;printf("%d\n",ans);
return 0;
}
【Luogu4781】【模板】拉格朗日插值的更多相关文章
- CF622F——自然数幂和模板&&拉格朗日插值
题意 求 $ \displaystyle \sum_{i=1}^n i^k \ mod (1e9+7), n \leq 10^9, k \leq 10^6$. CF622F 分析 易知答案是一个 $k ...
- 【luogu4781】拉格朗日插值
题目背景 这是一道模板题 题目描述 由小学知识可知,nn个点(x_i,y_i)(xi,yi)可以唯一地确定一个多项式 现在,给定nn个点,请你确定这个多项式,并将kk代入求值 求出的值对99824 ...
- P4781 【模板】拉格朗日插值
P4781 [模板]拉格朗日插值 证明 :https://wenku.baidu.com/view/0f88088a172ded630b1cb6b4.html http://www.ebola.pro ...
- LG4781 【模板】拉格朗日插值
题意 题目描述 由小学知识可知,$n$个点$(x_i,y_i)$可以唯一地确定一个多项式 现在,给定$n$个点,请你确定这个多项式,并将$k$代入求值 求出的值对$998244353$取模 输入输出格 ...
- Luogu 4781 【模板】拉格朗日插值
模板题. 拉格朗日插值的精髓在于这个公式 $$f(x) = \sum_{i = 1}^{n}y_i\prod _{j \neq i}\frac{x - x_i}{x_j - x_i}$$ 其中$(x_ ...
- LG4781 【模板】拉格朗日插值 和 JLOI2016 成绩比较
[模板]拉格朗日插值 题目描述 由小学知识可知,$n$个点$(x_i,y_i)$可以唯一地确定一个多项式 现在,给定$n$个点,请你确定这个多项式,并将$k$代入求值 求出的值对$998244353$ ...
- luogu P4781 【模板】拉格朗日插值
嘟嘟嘟 本来以为拉格朗日插值是一个很复杂的东西,今天学了一下才知道就是一个公式-- 我们都知道\(n\)个点\((x_i, y_i)\)可以确定唯一一个最高次为\(n - 1\)的多项式,那么现在我们 ...
- Luogu P4781【模板】拉格朗日插值
洛谷传送门 板题-注意一下求多个数的乘积的逆元不要一个个快速幂求逆元,那样很慢,时间复杂度就是O(n2log)O(n^2log)O(n2log).直接先乘起来最后求一次逆元就行了.时间复杂度为O(nl ...
- fold算法(拉格朗日插值)
如果打表发现某个数列: 差分有限次之后全为0 例如: 2017新疆乌鲁木齐ICPC现场赛D题 ,,,,,,,,,,…… [2018江苏南京ICPC现场赛也有这样的题目] 那么可以使用以下黑科技计算出第 ...
随机推荐
- PS制作墙壁上海报卷页图片效果
1.首先,打开PS,新建合适的画布. 2.为了使背景具有质感,执行滤镜—滤镜库—纹理化,具体参数按你的感觉来. 3.新建画布“图层1”,为了方便观察,填充为灰色画布,ctrl+t适当缩小画布大小,如图 ...
- 关于iframe页面里的重定向问题
最近公司做的一个功能,使用了iframe,父页面内嵌子页面,里面的坑还挺多的,上次其实就遇到过,只不过今天在此描述一下. 请允许我画个草图: 外层大圈是父级页面,里层是子级页面,我们是在父级引用子级页 ...
- Python中Celery 的基本用法以及Django 结合 Celery 的使用和实时监控进程
celery是什么 1 celery是一个简单,灵活且可靠的,处理大量消息的分布式系统 2 专注于实时处理的异步任务队列 3 同时也支持任务调度 执行流程 Celery 基本使用 tasks.py i ...
- js判断是否是微信浏览器以及重定向
async created () {//这个是判断是否是微信浏览器, let ua = navigator.userAgent.toLowerCase() if (ua.match(/MicroMes ...
- babel(一)
一.babel npm babel src/index.js -d lib 二.@babel/core @babel/cli @babel/core 转换语法核心 @babel/cli 执行 ...
- 虚拟机的ip地址为什么会发生变化
因为虚拟机在NAT模式下由Vmware8虚拟网卡提供虚拟机的IP分配,网桥模式下由Vmware1来提供IP分配.它们都相当于 一个小型的DHCP服务器,除非改动虚拟机的网络连接方式,或动了虚拟网卡服务 ...
- centos7根分区扩容(亲测有效)
root@haojftest:~# df -h 文件系统 容量 已用 可用 已用% 挂载点 /dev/mapper/centos_test2-root 28G 14G 15G % / devtmpfs ...
- 微信小程序flex佈局
聲明:display:flex 換行flex-wrap:flex-wrap:nowrap(不換行).wrap(換行).wrap-reserve(第一行在下面): 主軸對齊(橫向對齊)justify-c ...
- LODOP 获取打印设计代码不带INIT初始化语句
前面的博文生成JS代码模版和文档式模版,生成的是带初始化语句的模版,如果想要打印多个,可以循环多个任务,什么是一个任务,可查看本博客相关博文:Lodop打印语句最基本结构介绍(什么是一个任务)一个任务 ...
- SQL 添加索引
使用CREATE 语句创建索引 CREATE INDEX index_name ON table_name(column_name,column_name) include(score) 普通索引 C ...