【Luogu4781】【模板】拉格朗日插值

题面

洛谷

题解

套个公式就好

#include<cstdio>
#define ll long long
#define MOD 998244353
#define MAX 2020
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,K,x[MAX],y[MAX],ans;
int fpow(int a,int b)
{
int s=1;
while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}
return s;
}
int main()
{
n=read()-1;K=read();
for(int i=0;i<=n;++i)x[i]=read(),y[i]=read();
for(int i=0;i<=n;++i)
{
int tmp=1;
for(int j=0;j<=n;++j)
if(i!=j)tmp=1ll*tmp*(K-x[j])%MOD*fpow(x[i]-x[j],MOD-2)%MOD;
ans=(ans+1ll*y[i]*tmp)%MOD;
}
ans=(ans+MOD)%MOD;printf("%d\n",ans);
return 0;
}

【Luogu4781】【模板】拉格朗日插值的更多相关文章

  1. CF622F——自然数幂和模板&&拉格朗日插值

    题意 求 $ \displaystyle \sum_{i=1}^n i^k \ mod (1e9+7), n \leq 10^9, k \leq 10^6$. CF622F 分析 易知答案是一个 $k ...

  2. 【luogu4781】拉格朗日插值

    题目背景 这是一道模板题 题目描述 由小学知识可知,nn个点(x_i,y_i)(xi​,yi​)可以唯一地确定一个多项式 现在,给定nn个点,请你确定这个多项式,并将kk代入求值 求出的值对99824 ...

  3. P4781 【模板】拉格朗日插值

    P4781 [模板]拉格朗日插值 证明 :https://wenku.baidu.com/view/0f88088a172ded630b1cb6b4.html http://www.ebola.pro ...

  4. LG4781 【模板】拉格朗日插值

    题意 题目描述 由小学知识可知,$n$个点$(x_i,y_i)$可以唯一地确定一个多项式 现在,给定$n$个点,请你确定这个多项式,并将$k$代入求值 求出的值对$998244353$取模 输入输出格 ...

  5. Luogu 4781 【模板】拉格朗日插值

    模板题. 拉格朗日插值的精髓在于这个公式 $$f(x) = \sum_{i = 1}^{n}y_i\prod _{j \neq i}\frac{x - x_i}{x_j - x_i}$$ 其中$(x_ ...

  6. LG4781 【模板】拉格朗日插值 和 JLOI2016 成绩比较

    [模板]拉格朗日插值 题目描述 由小学知识可知,$n$个点$(x_i,y_i)$可以唯一地确定一个多项式 现在,给定$n$个点,请你确定这个多项式,并将$k$代入求值 求出的值对$998244353$ ...

  7. luogu P4781 【模板】拉格朗日插值

    嘟嘟嘟 本来以为拉格朗日插值是一个很复杂的东西,今天学了一下才知道就是一个公式-- 我们都知道\(n\)个点\((x_i, y_i)\)可以确定唯一一个最高次为\(n - 1\)的多项式,那么现在我们 ...

  8. Luogu P4781【模板】拉格朗日插值

    洛谷传送门 板题-注意一下求多个数的乘积的逆元不要一个个快速幂求逆元,那样很慢,时间复杂度就是O(n2log)O(n^2log)O(n2log).直接先乘起来最后求一次逆元就行了.时间复杂度为O(nl ...

  9. fold算法(拉格朗日插值)

    如果打表发现某个数列: 差分有限次之后全为0 例如: 2017新疆乌鲁木齐ICPC现场赛D题 ,,,,,,,,,,…… [2018江苏南京ICPC现场赛也有这样的题目] 那么可以使用以下黑科技计算出第 ...

随机推荐

  1. PS制作墙壁上海报卷页图片效果

    1.首先,打开PS,新建合适的画布. 2.为了使背景具有质感,执行滤镜—滤镜库—纹理化,具体参数按你的感觉来. 3.新建画布“图层1”,为了方便观察,填充为灰色画布,ctrl+t适当缩小画布大小,如图 ...

  2. 关于iframe页面里的重定向问题

    最近公司做的一个功能,使用了iframe,父页面内嵌子页面,里面的坑还挺多的,上次其实就遇到过,只不过今天在此描述一下. 请允许我画个草图: 外层大圈是父级页面,里层是子级页面,我们是在父级引用子级页 ...

  3. Python中Celery 的基本用法以及Django 结合 Celery 的使用和实时监控进程

    celery是什么 1 celery是一个简单,灵活且可靠的,处理大量消息的分布式系统 2 专注于实时处理的异步任务队列 3 同时也支持任务调度 执行流程 Celery 基本使用 tasks.py i ...

  4. js判断是否是微信浏览器以及重定向

    async created () {//这个是判断是否是微信浏览器, let ua = navigator.userAgent.toLowerCase() if (ua.match(/MicroMes ...

  5. babel(一)

    一.babel npm babel src/index.js -d lib 二.@babel/core   @babel/cli @babel/core  转换语法核心 @babel/cli   执行 ...

  6. 虚拟机的ip地址为什么会发生变化

    因为虚拟机在NAT模式下由Vmware8虚拟网卡提供虚拟机的IP分配,网桥模式下由Vmware1来提供IP分配.它们都相当于 一个小型的DHCP服务器,除非改动虚拟机的网络连接方式,或动了虚拟网卡服务 ...

  7. centos7根分区扩容(亲测有效)

    root@haojftest:~# df -h 文件系统 容量 已用 可用 已用% 挂载点 /dev/mapper/centos_test2-root 28G 14G 15G % / devtmpfs ...

  8. 微信小程序flex佈局

    聲明:display:flex 換行flex-wrap:flex-wrap:nowrap(不換行).wrap(換行).wrap-reserve(第一行在下面): 主軸對齊(橫向對齊)justify-c ...

  9. LODOP 获取打印设计代码不带INIT初始化语句

    前面的博文生成JS代码模版和文档式模版,生成的是带初始化语句的模版,如果想要打印多个,可以循环多个任务,什么是一个任务,可查看本博客相关博文:Lodop打印语句最基本结构介绍(什么是一个任务)一个任务 ...

  10. SQL 添加索引

    使用CREATE 语句创建索引 CREATE INDEX index_name ON table_name(column_name,column_name) include(score) 普通索引 C ...