【Luogu4781】【模板】拉格朗日插值

题面

洛谷

题解

套个公式就好

#include<cstdio>
#define ll long long
#define MOD 998244353
#define MAX 2020
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,K,x[MAX],y[MAX],ans;
int fpow(int a,int b)
{
int s=1;
while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}
return s;
}
int main()
{
n=read()-1;K=read();
for(int i=0;i<=n;++i)x[i]=read(),y[i]=read();
for(int i=0;i<=n;++i)
{
int tmp=1;
for(int j=0;j<=n;++j)
if(i!=j)tmp=1ll*tmp*(K-x[j])%MOD*fpow(x[i]-x[j],MOD-2)%MOD;
ans=(ans+1ll*y[i]*tmp)%MOD;
}
ans=(ans+MOD)%MOD;printf("%d\n",ans);
return 0;
}

【Luogu4781】【模板】拉格朗日插值的更多相关文章

  1. CF622F——自然数幂和模板&&拉格朗日插值

    题意 求 $ \displaystyle \sum_{i=1}^n i^k \ mod (1e9+7), n \leq 10^9, k \leq 10^6$. CF622F 分析 易知答案是一个 $k ...

  2. 【luogu4781】拉格朗日插值

    题目背景 这是一道模板题 题目描述 由小学知识可知,nn个点(x_i,y_i)(xi​,yi​)可以唯一地确定一个多项式 现在,给定nn个点,请你确定这个多项式,并将kk代入求值 求出的值对99824 ...

  3. P4781 【模板】拉格朗日插值

    P4781 [模板]拉格朗日插值 证明 :https://wenku.baidu.com/view/0f88088a172ded630b1cb6b4.html http://www.ebola.pro ...

  4. LG4781 【模板】拉格朗日插值

    题意 题目描述 由小学知识可知,$n$个点$(x_i,y_i)$可以唯一地确定一个多项式 现在,给定$n$个点,请你确定这个多项式,并将$k$代入求值 求出的值对$998244353$取模 输入输出格 ...

  5. Luogu 4781 【模板】拉格朗日插值

    模板题. 拉格朗日插值的精髓在于这个公式 $$f(x) = \sum_{i = 1}^{n}y_i\prod _{j \neq i}\frac{x - x_i}{x_j - x_i}$$ 其中$(x_ ...

  6. LG4781 【模板】拉格朗日插值 和 JLOI2016 成绩比较

    [模板]拉格朗日插值 题目描述 由小学知识可知,$n$个点$(x_i,y_i)$可以唯一地确定一个多项式 现在,给定$n$个点,请你确定这个多项式,并将$k$代入求值 求出的值对$998244353$ ...

  7. luogu P4781 【模板】拉格朗日插值

    嘟嘟嘟 本来以为拉格朗日插值是一个很复杂的东西,今天学了一下才知道就是一个公式-- 我们都知道\(n\)个点\((x_i, y_i)\)可以确定唯一一个最高次为\(n - 1\)的多项式,那么现在我们 ...

  8. Luogu P4781【模板】拉格朗日插值

    洛谷传送门 板题-注意一下求多个数的乘积的逆元不要一个个快速幂求逆元,那样很慢,时间复杂度就是O(n2log)O(n^2log)O(n2log).直接先乘起来最后求一次逆元就行了.时间复杂度为O(nl ...

  9. fold算法(拉格朗日插值)

    如果打表发现某个数列: 差分有限次之后全为0 例如: 2017新疆乌鲁木齐ICPC现场赛D题 ,,,,,,,,,,…… [2018江苏南京ICPC现场赛也有这样的题目] 那么可以使用以下黑科技计算出第 ...

随机推荐

  1. iRate---一个跳转AppStore评分弹窗

    https://www.aliyun.com/jiaocheng/357479.html 摘要:gitHub地址:https://github.com/nicklockwood/iRate可以通过配置 ...

  2. python模块详解

    什么是模块? 常见的场景:一个模块就是一个包含了python定义和声明的文件,文件名就是模块名字加上.py的后缀. 但其实import加载的模块分为四个通用类别: 1 使用python编写的代码(.p ...

  3. IDEA通过Git同步代码到Coding

     准备工作: (1)在本地创建好项目 (2)在coding创建好项目,并设置公开      1.创建Git仓库 2.选择对应的本地项目文件夹 以上两步相当于在项目文件夹中git bash here 并 ...

  4. 使用 Drools 和 JPA & Drools show case in docker hub

    使用 Drools 和 JPA 实现持续的实时数据分析https://www.ibm.com/developerworks/cn/java/j-drools5/index.html Drools - ...

  5. mongoDB 安装和配置环境变量,超详细版本

    下载mongoDB进行安装:https://www.mongodb.com/                                                 到Community Se ...

  6. vue-cli 上传图片上传到OSS(阿里云)

    https://help.aliyun.com/document_detail/32068.html?spm=5176.doc32069.6.304.Qc4SUs(看) https://help.al ...

  7. Day 5-3 多态与多态性

    多态与多态性 鸭子类型 多态与多态性 多态:一类事物有多种形态.比如,动物有多种形态,人,狗,猪,豹子.水也有多种形态,冰,雪,水蒸气. #多态:同一类事物的多种形态 import abc class ...

  8. PMP三点

    三点估算:悲观36天,可能21天,乐观6天.在16至26天内完成的概率是多少?这个算法是PERT估算最终估算结果=(悲观工期+乐观工期+4×最可能工期)/6=(36+6++4*21)/6=21标准差= ...

  9. Django项目目录介绍

    一个小问题: 什么是根目录:就是没有路径,只有域名..url(r'^$') 补充一张关于wsgiref模块的图片 一.MTV模型 Django的MTV分别代表: Model(模型):和数据库相关的,负 ...

  10. python 列表、元组、字典

    一.列表 [ ] 如下的列子都可以成为列表,c=[1,2,3,4,5,6],d=["abc", "张三",“李四”],e=[1,2,3,"abc&qu ...