【BZOJ5314】[JSOI2018]潜入行动(动态规划)

题面

BZOJ

洛谷

题解

不难想到一个沙雕\(dp\),设\(f[i][j][0/1][0/1]\)表示当前点\(i\),子树中一共放了\(j\)个,这个点是否放了,这个是否被覆盖了。

看起来直接合并是\(O(nk^2)\)的QwQ。。。。。

然后我以为是\(O(nk^2)\)的就不会做了嘤嘤嘤。

实际上是\(O(nk)\)的。。。

证明大概是这样的:

考虑什么时候会产生\(O(k^2)\)的贡献,即一个点有两棵子树的大小大于\(k\),而这样子合并次数不会超过\(O(\frac{n}{k})\),所以这部分的复杂度是\(O(nk)\)的。

另外一种情况是一个子树小于\(k\),经过合并之后变成大于\(k\)的子树了,显然对于一个点,如果它的子树小于\(k\),在某次合并之后它的子树就会大于\(k\),并且对于每个点而言,只会在他的某个祖先的地方经历一次这样子的合并,所以这样子均摊每个点会产生\(O(k)\)的贡献。

第三种情况是两个点的子树大小都小于\(k\),合并完之后两者还是小于\(k\)。这个操作理解为每个两个集合中的点一一对应的产生一次贡献,那么盯着某一个特定点考虑,它每次产生的贡献是合并进来的子树大小的,因为在这一部分的过程中子树大小总是小于\(k\),因此每个点产生的贡献也最多是\(O(k)\)的。

综上,在三种合并情况中,每种情况产生的贡献都最多是\(O(nk)\)的,所以全局的复杂度就是\(O(nk)\)。

#include<iostream>
#include<cstdio>
using namespace std;
#define MAX 100100
#define MOD 1000000007
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
struct Line{int v,next;}e[MAX<<1];
int h[MAX],cnt=1;
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;}
int n,K,f[MAX][101][2][2],size[MAX];
int tmp[101][2][2];
void dfs(int u,int ff)
{
size[u]=1;f[u][0][0][0]=1;f[u][1][1][0]=1;
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;if(v==ff)continue;dfs(v,u);
for(int j=0;j<=size[u]&&j<=K;++j)
for(int k=0;k<=size[v]&&j+k<=K;++k)
{
if(f[u][j][0][0])
{
add(tmp[j+k][0][0],1ll*f[u][j][0][0]*f[v][k][0][1]%MOD);
add(tmp[j+k][0][1],1ll*f[u][j][0][0]*f[v][k][1][1]%MOD);
}
if(f[u][j][0][1])
{
add(tmp[j+k][0][1],1ll*f[u][j][0][1]*(f[v][k][0][1]+f[v][k][1][1])%MOD);
}
if(f[u][j][1][0])
{
add(tmp[j+k][1][0],1ll*f[u][j][1][0]*(f[v][k][0][0]+f[v][k][0][1])%MOD);
add(tmp[j+k][1][1],1ll*f[u][j][1][0]*(f[v][k][1][0]+f[v][k][1][1])%MOD);
}
if(f[u][j][1][1])
{
int s=0;
add(s,f[v][k][0][0]);add(s,f[v][k][0][1]);
add(s,f[v][k][1][0]);add(s,f[v][k][1][1]);
add(tmp[j+k][1][1],1ll*f[u][j][1][1]*s%MOD);
}
}
size[u]+=size[v];
for(int j=0;j<=size[u]&&j<=K;++j)
{
f[u][j][0][0]=tmp[j][0][0];tmp[j][0][0]=0;
f[u][j][0][1]=tmp[j][0][1];tmp[j][0][1]=0;
f[u][j][1][0]=tmp[j][1][0];tmp[j][1][0]=0;
f[u][j][1][1]=tmp[j][1][1];tmp[j][1][1]=0;
}
}
}
int main()
{
n=read();K=read();
for(int i=1,u,v;i<n;++i)u=read(),v=read(),Add(u,v),Add(v,u);
dfs(1,0);
int ans=(f[1][K][0][1]+f[1][K][1][1])%MOD;
printf("%d\n",ans);
return 0;
}

【BZOJ5314】[JSOI2018]潜入行动(动态规划)的更多相关文章

  1. BZOJ5314: [Jsoi2018]潜入行动

    BZOJ5314: [Jsoi2018]潜入行动 https://lydsy.com/JudgeOnline/problem.php?id=5314 分析: 裸树形背包,设\(f[x][i][0/1] ...

  2. [bzoj5314][Jsoi2018]潜入行动_树形背包dp

    潜入行动 bzoj-5314 Jsoi-2018 题目大意:题目链接. 注释:略. 想法: 学长给我们除了一套考试题,三个学长一人一道这是T1. 好吧好吧,傻逼背包...... 复杂度$O(nk)$. ...

  3. BZOJ5314 [Jsoi2018]潜入行动 【背包类树形dp】

    题目链接 BZOJ5314 题解 设\(f[i][j][0|1][0|1]\)表示\(i\)为根的子树,用了\(j\)个监测器,\(i\)节点是否被控制,\(i\)节点是否放置的方案数 然后转移即可 ...

  4. BZOJ5314: [Jsoi2018]潜入行动 (树形DP)

    题意:一棵树选择恰好k个结点放置监听器 每个监听器只能监听相邻的节点 问能使得所有节点被监听的种类数 题解:反正就是很well-known的树形DP了 至于时间复杂度为什么是nk 不会不学 很好想到四 ...

  5. BZOJ5314:[JSOI2018]潜入行动——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=5314 https://www.luogu.org/problemnew/show/P4516 ht ...

  6. bzoj 5314: [Jsoi2018]潜入行动

    Description 外星人又双叒叕要攻打地球了,外星母舰已经向地球航行!这一次,JYY已经联系好了黄金舰队,打算联合所有JSO Ier抵御外星人的进攻.在黄金舰队就位之前,JYY打算事先了解外星人 ...

  7. [loj2546][JSOI2018]潜入行动(树形DP)

    题目描述 外星人又双叒叕要攻打地球了,外星母舰已经向地球航行!这一次,JYY 已经联系好了黄金舰队,打算联合所有 JSOIer 抵御外星人的进攻. 在黄金舰队就位之前,JYY 打算事先了解外星人的进攻 ...

  8. luogu P4516 [JSOI2018]潜入行动

    LINK:潜入行动 初看题感觉很不可做 但是树形dp的状态过于明显. 容易设\(f_{x,j,l,r}\)表示x为根子树内放了j个设备且子树内都被覆盖l表示x是否被覆盖r表示x是否放设备的方案数. 初 ...

  9. [JSOI2018]潜入行动

    题目 我好菜啊,嘤嘤嘤 原来本地访问数组负下标不会报\(RE\)或者\(WA\),甚至能跑出正解啊 这道题还是非常呆的 我们发现\(k\)很小,于是断定这是一个树上背包 发现在一个点上安装控制器并不能 ...

随机推荐

  1. 什么是IaaS, PaaS和SaaS及其区别

    IaaS, PaaS和SaaS是云计算的三种服务模式. . SaaS:Software-as-a-Service(软件即服务)提供给客户的服务是运营商运行在云计算基础设施上的应用程序,用户可以在各种设 ...

  2. Docker防主机意外断电导致容器实例无法驱动解决方案:UPS || write barrier || 上btrfs定期snapshot

    Write barrier - Wikipediahttps://en.wikipedia.org/wiki/Write_barrier R大在在介绍CMS时提到了write barrier写屏蔽的概 ...

  3. java注解和自定义注解的简单使用

    前言 在使用Spring Boot的时候,大量使用注解的语法去替代XML配置文件,十分好用. 然而,在使用注解的时候只知道使用,却不知道原理.直到需要用到自定义注解的时候,才发现对注解原理一无所知,所 ...

  4. 6 Prefer and Would rather

    1 prefer 使用 "prefer" 用来表明通常喜欢某件事甚于另一件事.说话者喜欢打高尔夫球更甚于喜欢打网球."prefer" 的后面可以接名词(&quo ...

  5. Oracle可视化工具PL/SQL Developer的安装与配置

    安装程序: 安装目录不能有中文和空格,否则无法进行远程连接. 推荐使用 D:\PLSQLDeveloper 为安装目录 破解PLSQLDeveloper 使用工具 PLSQL Developer10. ...

  6. 转《vue引入第三方js库》

    一.绝对路径直接引入,全局可用 二.绝对路径直接引入,配置后,import 引入后再使用 三.webpack中配置 alias,import 引入后再使用 四.webpack 中配置 plugins, ...

  7. python学习笔记(8)--random库的使用

    伪随机数:采用梅森旋转算法生成的伪随机序列中元素 使用random库 一.基本随机函数 随机数需要一个种子,依据这个种子通过梅森旋转算法产生固定序列的随机数.seed(a=None)  初始化给定的随 ...

  8. 将WCF寄宿在托管的Windows服务中

    在我之前的一篇博客中我介绍了如何发布WCF服务并将该服务寄宿于IIS上,今天我再来介绍一种方式,就是将WCF服务寄宿在Windows服务中,这样做有什么好处呢?当然可以省去部署IIS等一系列的问题,能 ...

  9. Google css & Google fonts

    最近用某开源模板做提案的时候, 抓包工具老是有外部Request. 问题出在某css中有这么一句: @import url(https://fonts.googleapis.com/css?famil ...

  10. 十分钟了结MySQL information_schema

    information_schema数据库是MySQL系统自带的数据库,它提供了数据库元数据的访问方式.感觉information_schema就像是MySQL实例的一个百科全书,记录了数据库当中大部 ...