【BZOJ5314】[JSOI2018]潜入行动(动态规划)
【BZOJ5314】[JSOI2018]潜入行动(动态规划)
题面
题解
不难想到一个沙雕\(dp\),设\(f[i][j][0/1][0/1]\)表示当前点\(i\),子树中一共放了\(j\)个,这个点是否放了,这个是否被覆盖了。
看起来直接合并是\(O(nk^2)\)的QwQ。。。。。
然后我以为是\(O(nk^2)\)的就不会做了嘤嘤嘤。
实际上是\(O(nk)\)的。。。
证明大概是这样的:
考虑什么时候会产生\(O(k^2)\)的贡献,即一个点有两棵子树的大小大于\(k\),而这样子合并次数不会超过\(O(\frac{n}{k})\),所以这部分的复杂度是\(O(nk)\)的。
另外一种情况是一个子树小于\(k\),经过合并之后变成大于\(k\)的子树了,显然对于一个点,如果它的子树小于\(k\),在某次合并之后它的子树就会大于\(k\),并且对于每个点而言,只会在他的某个祖先的地方经历一次这样子的合并,所以这样子均摊每个点会产生\(O(k)\)的贡献。
第三种情况是两个点的子树大小都小于\(k\),合并完之后两者还是小于\(k\)。这个操作理解为每个两个集合中的点一一对应的产生一次贡献,那么盯着某一个特定点考虑,它每次产生的贡献是合并进来的子树大小的,因为在这一部分的过程中子树大小总是小于\(k\),因此每个点产生的贡献也最多是\(O(k)\)的。
综上,在三种合并情况中,每种情况产生的贡献都最多是\(O(nk)\)的,所以全局的复杂度就是\(O(nk)\)。
#include<iostream>
#include<cstdio>
using namespace std;
#define MAX 100100
#define MOD 1000000007
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
struct Line{int v,next;}e[MAX<<1];
int h[MAX],cnt=1;
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;}
int n,K,f[MAX][101][2][2],size[MAX];
int tmp[101][2][2];
void dfs(int u,int ff)
{
size[u]=1;f[u][0][0][0]=1;f[u][1][1][0]=1;
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;if(v==ff)continue;dfs(v,u);
for(int j=0;j<=size[u]&&j<=K;++j)
for(int k=0;k<=size[v]&&j+k<=K;++k)
{
if(f[u][j][0][0])
{
add(tmp[j+k][0][0],1ll*f[u][j][0][0]*f[v][k][0][1]%MOD);
add(tmp[j+k][0][1],1ll*f[u][j][0][0]*f[v][k][1][1]%MOD);
}
if(f[u][j][0][1])
{
add(tmp[j+k][0][1],1ll*f[u][j][0][1]*(f[v][k][0][1]+f[v][k][1][1])%MOD);
}
if(f[u][j][1][0])
{
add(tmp[j+k][1][0],1ll*f[u][j][1][0]*(f[v][k][0][0]+f[v][k][0][1])%MOD);
add(tmp[j+k][1][1],1ll*f[u][j][1][0]*(f[v][k][1][0]+f[v][k][1][1])%MOD);
}
if(f[u][j][1][1])
{
int s=0;
add(s,f[v][k][0][0]);add(s,f[v][k][0][1]);
add(s,f[v][k][1][0]);add(s,f[v][k][1][1]);
add(tmp[j+k][1][1],1ll*f[u][j][1][1]*s%MOD);
}
}
size[u]+=size[v];
for(int j=0;j<=size[u]&&j<=K;++j)
{
f[u][j][0][0]=tmp[j][0][0];tmp[j][0][0]=0;
f[u][j][0][1]=tmp[j][0][1];tmp[j][0][1]=0;
f[u][j][1][0]=tmp[j][1][0];tmp[j][1][0]=0;
f[u][j][1][1]=tmp[j][1][1];tmp[j][1][1]=0;
}
}
}
int main()
{
n=read();K=read();
for(int i=1,u,v;i<n;++i)u=read(),v=read(),Add(u,v),Add(v,u);
dfs(1,0);
int ans=(f[1][K][0][1]+f[1][K][1][1])%MOD;
printf("%d\n",ans);
return 0;
}
【BZOJ5314】[JSOI2018]潜入行动(动态规划)的更多相关文章
- BZOJ5314: [Jsoi2018]潜入行动
BZOJ5314: [Jsoi2018]潜入行动 https://lydsy.com/JudgeOnline/problem.php?id=5314 分析: 裸树形背包,设\(f[x][i][0/1] ...
- [bzoj5314][Jsoi2018]潜入行动_树形背包dp
潜入行动 bzoj-5314 Jsoi-2018 题目大意:题目链接. 注释:略. 想法: 学长给我们除了一套考试题,三个学长一人一道这是T1. 好吧好吧,傻逼背包...... 复杂度$O(nk)$. ...
- BZOJ5314 [Jsoi2018]潜入行动 【背包类树形dp】
题目链接 BZOJ5314 题解 设\(f[i][j][0|1][0|1]\)表示\(i\)为根的子树,用了\(j\)个监测器,\(i\)节点是否被控制,\(i\)节点是否放置的方案数 然后转移即可 ...
- BZOJ5314: [Jsoi2018]潜入行动 (树形DP)
题意:一棵树选择恰好k个结点放置监听器 每个监听器只能监听相邻的节点 问能使得所有节点被监听的种类数 题解:反正就是很well-known的树形DP了 至于时间复杂度为什么是nk 不会不学 很好想到四 ...
- BZOJ5314:[JSOI2018]潜入行动——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=5314 https://www.luogu.org/problemnew/show/P4516 ht ...
- bzoj 5314: [Jsoi2018]潜入行动
Description 外星人又双叒叕要攻打地球了,外星母舰已经向地球航行!这一次,JYY已经联系好了黄金舰队,打算联合所有JSO Ier抵御外星人的进攻.在黄金舰队就位之前,JYY打算事先了解外星人 ...
- [loj2546][JSOI2018]潜入行动(树形DP)
题目描述 外星人又双叒叕要攻打地球了,外星母舰已经向地球航行!这一次,JYY 已经联系好了黄金舰队,打算联合所有 JSOIer 抵御外星人的进攻. 在黄金舰队就位之前,JYY 打算事先了解外星人的进攻 ...
- luogu P4516 [JSOI2018]潜入行动
LINK:潜入行动 初看题感觉很不可做 但是树形dp的状态过于明显. 容易设\(f_{x,j,l,r}\)表示x为根子树内放了j个设备且子树内都被覆盖l表示x是否被覆盖r表示x是否放设备的方案数. 初 ...
- [JSOI2018]潜入行动
题目 我好菜啊,嘤嘤嘤 原来本地访问数组负下标不会报\(RE\)或者\(WA\),甚至能跑出正解啊 这道题还是非常呆的 我们发现\(k\)很小,于是断定这是一个树上背包 发现在一个点上安装控制器并不能 ...
随机推荐
- python3 selenium webdriver 元素定位xpath定位骚操作
源文http://www.cnblogs.com/qingchunjun/p/4208159.html By.xpath() 这个方法是非常强大的元素查找方式,使用这种方法几乎可以定位到页面上的任意元 ...
- 【翻译】asp.net core2.1认证和授权解密
asp.net core2.1认证和授权解密 本篇文章翻译自:https://digitalmccullough.com/posts/aspnetcore-auth-system-demystifie ...
- Laravel 服务容器、服务提供器、契约实例讲解
前言 刚开始看laravel服务容器.契约.服务提供器的确生涩难懂,不单单是概念繁多,而且实际的demo很难找(找是找到了,但难用啊),最后就隔一段时间看一遍,大概个十来遍,还真给看出个门道, ...
- Oracle循环
--无条件循环 declare v_num ; begin loop dbms_output.put_line(v_num); v_num:; ; end loop; end; --有条件循环 dec ...
- CentOS7安装Jenkins自动化部署maven项目
前言: 最近要弄一个jenkins工具,已经安装好了并且jenkins使用部署项目的流程已经基本走通,上图: 话不多说,开始 第一步:安装jenkins: [ 准备环境: 在centOS7环境上:安装 ...
- Hbase的作用
实时动态增加列 多版本的意思为多个用户地址,多个用户信息,多个用户号码
- python之路--面向对象-成员
一 . 成员 在类中你能写的所有内容都是类的成员 class 类名: # 方法 def__init__(self, 参数1, 参数2...): # 属性变量 self.属性1 = 参数1 self.属 ...
- python web需要了解哪些
1. socket.tcp/ip.http(cookie.session.token).https.ssl 2. wsgi:https://www.python.org/dev/peps/pep-33 ...
- Delphi中带缓存的数据更新技术
一. 概念 在网络环境下,数据库应用程序是c/s或者是多层结构的模式.在这种环境下,数据库应用程序的开发应当尽可能考虑减少网络数据传输量,并且尽量提高并发度.基于这个目的,带缓存的数据更新技术应运而生 ...
- java、二维数组详解!
/* java 二维数组的概念 使用方法! 1.什么是二维数组? 答案:数组的数组! 他的每一个元素都是数组!二维数组是(存储一维数组的)一维数组. 2.如何定义?(以二维数组为列) int arr[ ...