1 - Import Packages

import numpy as np
from keras import layers
from keras.layers import Input, Dense, Activation, ZeroPadding2D, BatchNormalization, Flatten, Conv2D
from keras.layers import AveragePooling2D, MaxPooling2D, Dropout, GlobalMaxPooling2D, GlobalAveragePooling2D
from keras.models import Model
from keras.preprocessing import image
from keras.utils import layer_utils
from keras.utils.data_utils import get_file
from keras.applications.imagenet_utils import preprocess_input
import pydot
from IPython.display import SVG
from keras.utils.vis_utils import model_to_dot
from keras.utils import plot_model
from kt_utils import * import keras.backend as K
K.set_image_data_format('channels_last')
import matplotlib.pyplot as plt
from matplotlib.pyplot import imshow %matplotlib inline

2 - The Happy House

2.1 - Dataset Description

2.2 - Normalize the dataset and learn about its shape

  图像大小为(64, 64, 3),训练集有600张图像,测试集有150张图像。

X_train_orig, Y_train_orig, X_test_orig, Y_test_orig, classes = load_dataset()

# Normalize image vectors
X_train = X_train_orig/255.
X_test = X_test_orig/255. # Reshape
Y_train = Y_train_orig.T
Y_test = Y_test_orig.T print ("number of training examples = " + str(X_train.shape[0]))
print ("number of test examples = " + str(X_test.shape[0]))
print ("X_train shape: " + str(X_train.shape))
print ("Y_train shape: " + str(Y_train.shape))
print ("X_test shape: " + str(X_test.shape))
print ("Y_test shape: " + str(Y_test.shape))
Result:
number of training examples = 600
number of test examples = 150
X_train shape: (600, 64, 64, 3)
Y_train shape: (600, 1)
X_test shape: (150, 64, 64, 3)
Y_test shape: (150, 1)

3 - Building a model in Keras

  这个作业比较开放,模型架构完全有自己决定。但建议使用作业提供的初始架构,然后再进行调整和改进。总之,我们可以修改模型的架构以及超参数。

  使用Keras训练和测试模型,有如下步骤:

  * 创建模型

  * 编译模型:$model.compile(optimizer = "...", loss = "...", metrics = ["accuracy"])$

  * 训练模型:$model.fit(x = ..., y = ..., epochs = ..., batch_size = ...)$

  * 测试模型:$model.evaluate(x = ..., y = ...)$

  综上,即是Create->Compile->Fit/Train->Evaluate/Test。

# GRADED FUNCTION: HappyModel

def HappyModel(input_shape):
"""
Implementation of the HappyModel. Arguments:
input_shape -- shape of the images of the dataset Returns:
model -- a Model() instance in Keras
""" ### START CODE HERE ###
# Feel free to use the suggested outline in the text above to get started, and run through the whole
# exercise (including the later portions of this notebook) once. The come back also try out other
# network architectures as well.
X_input = Input(input_shape) # Zero-Padding: pads the border of X_input with zeroes
X = ZeroPadding2D((3, 3))(X_input) # CONV -> BN -> RELU Block applied to X X = Conv2D(32, (7, 7), strides=(1, 1), name="conv0")(X)
X = BatchNormalization(axis=3, name="bn0")(X)
X = Activation("relu")(X) # MAXPOOL
X = MaxPooling2D((2, 2), name="max_pool")(X) # FLATTEN X (means convert it to a vector) + FULLYCONNECTED
X = Flatten()(X)
X = Dense(1, activation="sigmoid", name="fc")(X) # Create model. This creates your Keras model instance, you'll use this instance to train/test the model.
model = Model(inputs=X_input, outputs=X, name="HappyModel")
### END CODE HERE ### return model

3.1 - 创建模型

### START CODE HERE ### (1 line)
happyModel = HappyModel(X_train[0, :, :, :].shape)
### END CODE HERE ###

3.2 - 编译模型

### START CODE HERE ### (1 line)
happyModel.compile(optimizer="adam", loss="mse", metrics=["accuracy"])
### END CODE HERE ###

3.3 - 训练模型

  我选择迭代10次,每一个批次有16个样本。

### START CODE HERE ### (1 line)
happyModel.fit(x=X_train, y=Y_train, epochs=40, batch_size=16)
### END CODE HERE ###
Result:
Epoch 1/10
600/600 [==============================] - 15s 25ms/step - loss: 1.5877 - acc: 0.6433
Epoch 2/10
600/600 [==============================] - 15s 25ms/step - loss: 0.3024 - acc: 0.8617
Epoch 3/10
600/600 [==============================] - 15s 25ms/step - loss: 0.1550 - acc: 0.9317
Epoch 4/10
600/600 [==============================] - 15s 25ms/step - loss: 0.1032 - acc: 0.9683
Epoch 5/10
600/600 [==============================] - 15s 26ms/step - loss: 0.1603 - acc: 0.9367
Epoch 6/10
600/600 [==============================] - 16s 26ms/step - loss: 0.0952 - acc: 0.9733
Epoch 7/10
600/600 [==============================] - 15s 26ms/step - loss: 0.0820 - acc: 0.9767
Epoch 8/10
600/600 [==============================] - 16s 26ms/step - loss: 0.0670 - acc: 0.9833
Epoch 9/10
600/600 [==============================] - 15s 26ms/step - loss: 0.0699 - acc: 0.9750
Epoch 10/10
600/600 [==============================] - 16s 27ms/step - loss: 0.1436 - acc: 0.9467

3.4 - 测试模型

### START CODE HERE ### (1 line)
preds = happyModel.evaluate(x=X_test, y=Y_test)
### END CODE HERE ###
print()
print ("Loss = " + str(preds[0]))
print ("Test Accuracy = " + str(preds[1]))
Result:
150/150 [==============================] - 2s 11ms/step Loss = 4.14517145475
Test Accuracy = 0.559999998411

4 - Summary

happyModel.summary()
Result:
Layer (type) Output Shape Param #
=================================================================
input_2 (InputLayer) (None, 64, 64, 3) 0
_________________________________________________________________
zero_padding2d_1 (ZeroPaddin (None, 70, 70, 3) 0
_________________________________________________________________
conv0 (Conv2D) (None, 64, 64, 32) 4736
_________________________________________________________________
bn0 (BatchNormalization) (None, 64, 64, 32) 128
_________________________________________________________________
activation_1 (Activation) (None, 64, 64, 32) 0
_________________________________________________________________
max_pool (MaxPooling2D) (None, 32, 32, 32) 0
_________________________________________________________________
flatten_1 (Flatten) (None, 32768) 0
_________________________________________________________________
fc (Dense) (None, 1) 32769
=================================================================
Total params: 37,633
Trainable params: 37,569
Non-trainable params: 64
_________________________________________________________________
plot_model(happyModel, to_file='HappyModel.png')
SVG(model_to_dot(happyModel).create(prog='dot', format='svg'))
Result:


5 - References

https://web.stanford.edu/class/cs230/

DeepLearning.ai-Week2-Keras tutorial-the Happy House的更多相关文章

  1. DeepLearning.ai学习笔记(三)结构化机器学习项目--week2机器学习策略(2)

    一.进行误差分析 很多时候我们发现训练出来的模型有误差后,就会一股脑的想着法子去减少误差.想法固然好,但是有点headlong~ 这节视频中吴大大介绍了一个比较科学的方法,具体的看下面的例子 还是以猫 ...

  2. DeepLearning.ai学习笔记汇总

    第一章 神经网络与深度学习(Neural Network & Deeplearning) DeepLearning.ai学习笔记(一)神经网络和深度学习--Week3浅层神经网络 DeepLe ...

  3. Coursera深度学习(DeepLearning.ai)编程题&笔记

    因为是Jupyter Notebook的形式,所以不方便在博客中展示,具体可在我的github上查看. 第一章 Neural Network & DeepLearning week2 Logi ...

  4. Coursera机器学习+deeplearning.ai+斯坦福CS231n

    日志 20170410 Coursera机器学习 2017.11.28 update deeplearning 台大的机器学习课程:台湾大学林轩田和李宏毅机器学习课程 Coursera机器学习 Wee ...

  5. 吴恩达deepLearning.ai循环神经网络RNN学习笔记_看图就懂了!!!(理论篇)

    前言 目录: RNN提出的背景 - 一个问题 - 为什么不用标准神经网络 - RNN模型怎么解决这个问题 - RNN模型适用的数据特征 - RNN几种类型 RNN模型结构 - RNN block - ...

  6. 吴恩达deepLearning.ai循环神经网络RNN学习笔记_没有复杂数学公式,看图就懂了!!!(理论篇)

    本篇文章被Google中国社区组织人转发,评价: 条理清晰,写的很详细! 被阿里算法工程师点在看! 所以很值得一看! 前言 目录: RNN提出的背景 - 一个问题 - 为什么不用标准神经网络 - RN ...

  7. 【Deeplearning.ai 】吴恩达深度学习笔记及课后作业目录

    吴恩达深度学习课程的课堂笔记以及课后作业 代码下载:https://github.com/douzujun/Deep-Learning-Coursera 吴恩达推荐笔记:https://mp.weix ...

  8. Coursera DeepLearning.ai Logistic Regression逻辑回归总结

    既<Machine Learning>课程后,Andrew Ng又推出了新一系列的课程<DeepLearning.ai>,注册了一下可以试听7天.之后每个月要$49,想想还是有 ...

  9. Deeplearning.ai课程笔记--汇总

    从接触机器学习就了解到Andrew Ng的机器学习课程,后来发现又出来深度学习课程,就开始在网易云课堂上学习deeplearning.ai的课程,Andrew 的课真是的把深入浅出.当然学习这些课程还 ...

  10. 课程四(Convolutional Neural Networks),第二 周(Deep convolutional models: case studies) —— 2.Programming assignments : Keras Tutorial - The Happy House (not graded)

    Keras tutorial - the Happy House Welcome to the first assignment of week 2. In this assignment, you ...

随机推荐

  1. double free or corruption错误

    这是我自己写代码是遇到的错误,完全想不到报错和写错的地方有关联性,记录下来给别人参考. 不允许转载. WhiteBack(&cut_buff,&out_buff,5)函数内有一段 be ...

  2. Eclipse搭建SpringBoot之HelloWorld

    你的eclipse需要先安装 Spring Tool Suite™ 第一种方法(不建议,之所以贴上是因为探索的过程) 首先新建Maven工程 勾选第一个按钮,第三个是选择working set ,你可 ...

  3. linux文件系统启动流程、启动脚本

    linux文件系统启动流程.启动脚本 下面是一张Linux启动流程图: 在了解启动流程之前,我们应该先知道系统的几个重要脚本和配置文件,他们对应的路径为: 1. /sbin/init 2. /etc/ ...

  4. Linux基础-兄弟连Linux

    Linux基础增强与辅助知识梳理... ------------ Linux学习基础需要学习那些知识 学习Linux对于程序开发的好处 怎样开始学习Linux Linux的学习方法参考 Linux系统 ...

  5. 使用Redis模拟简单分布式锁,解决单点故障的问题

    需求描述: 最近做一个项目,项目中有一个功能,每天定时(凌晨1点)从数据库中获取需要爬虫的URL,并发送到对应的队列中,然后客户端监听对应的队列,然后执行任务.如果同时部署多个定时任务节点的话,每个节 ...

  6. spring 整合 redis,以及spring的RedisTemplate如何使用

    需要的jar包 spring-data-redis-1.6.2.RELEASE.jar jedis-2.7.2.jar(依赖 commons-pool2-2.3.jar) commons-pool2- ...

  7. USB_4大描述符

    本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/aaa6695798/archive/2009/11/06/4776202.aspx 在USB描述符中,从上到下分为四个 ...

  8. 理解I/O:随机和顺序

    转自:https://blog.csdn.net/BaiWfg2/article/details/52885287 原文:http://www.violin-memory.com/blog/under ...

  9. java和c#通过esb服务互调用组件

    场景:java和c#写的服务.站点,互相任意调用.实现一切即服务. 解决方案:使用这种轻量级的esb架构,通过tcp通信解决通信传输问题,总线服务解决服务地址问题,契约解决数据交互问题.由于组件封装了 ...

  10. Python——安装requests第三方库

    使用pip安装 在cmd下cd到这个目录下C:\Python27\Scripts,然后执行pip install requests 在cmd 命令行执行 E:   进入e盘 cd  Python\pr ...