BZOJ4916: 神犇和蒟蒻(杜教筛)
题意
求
$$\sum_{i = 1}^n \mu(i^2)$$
$$\sum_{i = 1}^n \phi(i^2)$$
$n \leqslant 10^9$
Sol
zz的我看第一问看了10min。
感觉自己智商被侮辱了qwq
基础太垃圾qwq。
算了正经点吧,第一问答案肯定是$1$,还不明白的重学反演吧。
第二问其实也不难
定理:
$\phi(i^2) = i\phi(i)$
$\sum_{d | n} \phi(d) = n$
显然$i$
考虑杜教筛的套路式子
$$g(1)s(n) = \sum_{i = 1}^n g(i)s(\frac{n}{i}) - \sum_{i = 2}^n g(i)s(\frac{n}{i})$$
当我们选择$g(i) = id(i) = i$时卷积的前缀和是比较好算的
$(g * s)(i) = \sum_{i = 1}^n i^2 = \frac{n * (n + 1) * (2n + 1)}{6}$
然后上杜教筛就行了
$$s(n) = \frac{n * (n + 1) * (2n + 1)}{6} - \sum_{i = 2}^n i \phi(\frac{n}{i})$$
人傻自带大常数
#include<cstdio>
#include<map>
#define LL long long
using namespace std;
const int MAXN = 1e7 + , mod = 1e9 + ;
const LL inv = ;
int N, prime[MAXN], vis[MAXN], tot;
LL phi[MAXN];
map<int, LL> ans;
void GetPhi(int N) {
vis[] = phi[] = ;
for(int i = ; i <= N; i++) {
if(!vis[i]) prime[++tot] = i, phi[i] = i - ;
for(int j = ; j <= tot && i * prime[j] <= N; j++) {
vis[i * prime[j]] = ;
if(!(i % prime[j])) {phi[i * prime[j]] = phi[i] * prime[j]; break;}
phi[i * prime[j]] = phi[i] * phi[prime[j]];
}
}
for(int i = ; i <= N; i++) phi[i] = (1ll * i * phi[i] % mod + phi[i - ] % mod) % mod;
}
LL Query(LL x) {
return (x * (x + ) / ) % mod;
}
LL S(LL N) {
if(ans[N]) return ans[N];
if(N <= 1e7) return phi[N];
LL sum = N * (N + ) % mod * ( * N + ) % mod * inv % mod, last = ;
for(int i = ; i <= N; i = last + ) {
last = N / (N / i);
sum -= S(N / i) % mod * (Query(last) - Query(i - )) % mod;
sum = (sum + mod) % mod;
}
return ans[N] = (sum % mod + mod) % mod;
}
int main() {
GetPhi(1e7);
scanf("%d", &N);
printf("1\n%lld", S(N));
return ;
}
BZOJ4916: 神犇和蒟蒻(杜教筛)的更多相关文章
- [BZOJ4916]神犇和蒟蒻 杜教筛/Min_25筛
题目大意: 给定\(n\le 10^9\),求: 1.\(\sum_{i=1}^n\mu(i^2)\) 2.\(\sum_{i=1}^n\varphi(i^2)\) 解释 1.\(\sum_{i=1} ...
- 【BZOJ4916】神犇和蒟蒻 杜教筛
题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4916 第一个询问即求出$\sum_{i=1}^{n} { \mu (i^2)} $,考虑 ...
- LG4213 【模板】杜教筛(Sum)和 BZOJ4916 神犇和蒟蒻
P4213 [模板]杜教筛(Sum) 题目描述 给定一个正整数$N(N\le2^{31}-1)$ 求 $$ans_1=\sum_{i=1}^n\varphi(i)$$ $$ans_2=\sum_{i= ...
- BZOJ4916: 神犇和蒟蒻【杜教筛】
Description 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; Input 请你读入一个整数N;1<=N<=1E9,A.B模1E9+7; Output 请你 ...
- BZOJ4916 神犇和蒟蒻 【欧拉函数 + 杜教筛】
题目 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; 输入格式 请你读入一个整数N;1<=N<=1E9,A.B模1E9+7; 输出格式 请你输出一个整数A=\sum ...
- BZOJ4916 神犇和蒟蒻(欧拉函数+杜教筛)
第一问是来搞笑的.由欧拉函数的计算公式容易发现φ(i2)=iφ(i).那么可以发现φ(n2)*id(n)(此处为卷积)=Σd*φ(d)*(n/d)=nΣφ(d)=n2 .这样就有了杜教筛所要求的容易算 ...
- Bzoj4916: 神犇和蒟蒻
题面 传送门 Sol 第一问puts("1") 第二问,\(\varphi(i^2)=i\varphi(i)\) 设\(\phi(n)=\sum_{i=1}^{n}i\varphi ...
- 【BZOJ4916】神犇和蒟蒻(杜教筛)
[BZOJ4916]神犇和蒟蒻(杜教筛) 题面 BZOJ 求 \[\sum_{i=1}^n\mu(i^2)\ \ 和\ \sum_{i=1}^n\phi(i^2)\] 其中\[n<=10^9\] ...
- 【BZOJ4916】神犇和蒟蒻 解题报告
[BZOJ4916]神犇和蒟蒻 Description 很久很久以前,有一群神犇叫sk和ypl和ssr和hjh和hgr和gjs和yay和xj和zwl和dcx和lyy和dtz和hy和xfz和myh和yw ...
随机推荐
- HTML页面中插入CSS样式的三种方法
1. 外部样式 当样式需要应用于很多页面时,外部样式表将是理想的选择.在使用外部样式表的情况下,你可以通过改变一个文件来改变整个站点的外观.每个页面使用<link>标签链接到样式表. &l ...
- 使用githubpages主题NexT的语法
使用githubpages主题NexT的语法 NexT 前言 不知道为啥?网站总是不出现? 添加「标签」页面 title: 标签测试文章 tags: - Testing - Another Tag - ...
- Redis学习笔记之延时队列
目录 一.业务场景 二.Redis延时队列 一.业务场景 所谓延时队列就是延时的消息队列,下面说一下一些业务场景比较好理解 1.1 实践场景 订单支付失败,每隔一段时间提醒用户 用户并发量的情况,可以 ...
- maven的标准pom.xml详解
maven是构建和管理理项目的利器,pom.xml 是其核心.一个标准的pom.xml该怎么写?其中的标签又有什么意义?话不多说,请看代码: <?xml version="1.0&qu ...
- MySQL单表多字段模糊查询
今天工作时遇到一个功能问题:就是输入关键字搜索的字段不只一个字段,比如 我输入: 超天才 ,需要检索出 包含这个关键字的 name . company.job等多个字段.在网上查询了一会就找到了答案. ...
- Django--缓存设置
Django缓存机制 一. 缓存介绍 缓存是将一些常用的数据保存内存或者memcache中,在一定的时间内有人来访问这些数据时,则不再去执行数据库及渲染等操作,而是直接从内存或memcache的缓存中 ...
- Intellij idea常用快捷键和技巧
一.常用快捷键 搜索 double shift 全文搜索内容 ctrl + shift + f 搜索文件 Ctrl + shift + n 打开项目窗口 Alt + 1 智能代码补全 Ctrl+Sh ...
- mysql 开发进阶篇系列 45 物理备份与恢复(xtrabackup 安装,用户权限,配置)
一. 安装说明 安装XtraBackup 2.4 版本有三种方式: (1) 存储库安装Percona XtraBackup(推荐) (2 )下载的rpm或apt包安装Percona XtraBacku ...
- 如何正确且高效实现OSSIM中文化的解决方案(图文详解)
前言 对于玩OSSIM的初学者或者中级水平的从业人员来说,都有一定必要性从中文看起,当然,最终还是英文的目标迈进,只是说,为了让自己更快速上手! 虽然系统说明支持中文,实际上,只是台湾的繁体中文而 ...
- Android UI(二)DridView的菜单
Jeff Lee blog: http://www.cnblogs.com/Alandre/ (泥沙砖瓦浆木匠),retain the url when reproduced ! Thanks ...