题意

$$\sum_{i = 1}^n \mu(i^2)$$

$$\sum_{i = 1}^n \phi(i^2)$$

$n \leqslant 10^9$

Sol

zz的我看第一问看了10min。

感觉自己智商被侮辱了qwq

基础太垃圾qwq。

算了正经点吧,第一问答案肯定是$1$,还不明白的重学反演吧。

第二问其实也不难

定理:

$\phi(i^2) = i\phi(i)$

$\sum_{d | n} \phi(d) = n$

显然$i$

考虑杜教筛的套路式子

$$g(1)s(n) = \sum_{i = 1}^n g(i)s(\frac{n}{i}) - \sum_{i = 2}^n g(i)s(\frac{n}{i})$$

当我们选择$g(i) = id(i) = i$时卷积的前缀和是比较好算的

$(g * s)(i) = \sum_{i = 1}^n i^2 = \frac{n * (n + 1) * (2n + 1)}{6}$

然后上杜教筛就行了

$$s(n) = \frac{n * (n + 1) * (2n + 1)}{6} - \sum_{i = 2}^n i \phi(\frac{n}{i})$$

人傻自带大常数

#include<cstdio>
#include<map>
#define LL long long
using namespace std;
const int MAXN = 1e7 + , mod = 1e9 + ;
const LL inv = ;
int N, prime[MAXN], vis[MAXN], tot;
LL phi[MAXN];
map<int, LL> ans;
void GetPhi(int N) {
vis[] = phi[] = ;
for(int i = ; i <= N; i++) {
if(!vis[i]) prime[++tot] = i, phi[i] = i - ;
for(int j = ; j <= tot && i * prime[j] <= N; j++) {
vis[i * prime[j]] = ;
if(!(i % prime[j])) {phi[i * prime[j]] = phi[i] * prime[j]; break;}
phi[i * prime[j]] = phi[i] * phi[prime[j]];
}
}
for(int i = ; i <= N; i++) phi[i] = (1ll * i * phi[i] % mod + phi[i - ] % mod) % mod;
}
LL Query(LL x) {
return (x * (x + ) / ) % mod;
}
LL S(LL N) {
if(ans[N]) return ans[N];
if(N <= 1e7) return phi[N];
LL sum = N * (N + ) % mod * ( * N + ) % mod * inv % mod, last = ;
for(int i = ; i <= N; i = last + ) {
last = N / (N / i);
sum -= S(N / i) % mod * (Query(last) - Query(i - )) % mod;
sum = (sum + mod) % mod;
}
return ans[N] = (sum % mod + mod) % mod;
}
int main() {
GetPhi(1e7);
scanf("%d", &N);
printf("1\n%lld", S(N));
return ;
}

BZOJ4916: 神犇和蒟蒻(杜教筛)的更多相关文章

  1. [BZOJ4916]神犇和蒟蒻 杜教筛/Min_25筛

    题目大意: 给定\(n\le 10^9\),求: 1.\(\sum_{i=1}^n\mu(i^2)\) 2.\(\sum_{i=1}^n\varphi(i^2)\) 解释 1.\(\sum_{i=1} ...

  2. 【BZOJ4916】神犇和蒟蒻 杜教筛

    题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4916 第一个询问即求出$\sum_{i=1}^{n} { \mu (i^2)} $,考虑 ...

  3. LG4213 【模板】杜教筛(Sum)和 BZOJ4916 神犇和蒟蒻

    P4213 [模板]杜教筛(Sum) 题目描述 给定一个正整数$N(N\le2^{31}-1)$ 求 $$ans_1=\sum_{i=1}^n\varphi(i)$$ $$ans_2=\sum_{i= ...

  4. BZOJ4916: 神犇和蒟蒻【杜教筛】

    Description 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; Input 请你读入一个整数N;1<=N<=1E9,A.B模1E9+7; Output 请你 ...

  5. BZOJ4916 神犇和蒟蒻 【欧拉函数 + 杜教筛】

    题目 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; 输入格式 请你读入一个整数N;1<=N<=1E9,A.B模1E9+7; 输出格式 请你输出一个整数A=\sum ...

  6. BZOJ4916 神犇和蒟蒻(欧拉函数+杜教筛)

    第一问是来搞笑的.由欧拉函数的计算公式容易发现φ(i2)=iφ(i).那么可以发现φ(n2)*id(n)(此处为卷积)=Σd*φ(d)*(n/d)=nΣφ(d)=n2 .这样就有了杜教筛所要求的容易算 ...

  7. Bzoj4916: 神犇和蒟蒻

    题面 传送门 Sol 第一问puts("1") 第二问,\(\varphi(i^2)=i\varphi(i)\) 设\(\phi(n)=\sum_{i=1}^{n}i\varphi ...

  8. 【BZOJ4916】神犇和蒟蒻(杜教筛)

    [BZOJ4916]神犇和蒟蒻(杜教筛) 题面 BZOJ 求 \[\sum_{i=1}^n\mu(i^2)\ \ 和\ \sum_{i=1}^n\phi(i^2)\] 其中\[n<=10^9\] ...

  9. 【BZOJ4916】神犇和蒟蒻 解题报告

    [BZOJ4916]神犇和蒟蒻 Description 很久很久以前,有一群神犇叫sk和ypl和ssr和hjh和hgr和gjs和yay和xj和zwl和dcx和lyy和dtz和hy和xfz和myh和yw ...

随机推荐

  1. 第58节:Java中的图形界面编程-GUI

    欢迎到我的简书查看我的文集 前言: GUI是图形用户界面,在Java中,图形用户界面我们用GUI表示,而GUI的完整英文为: Graphical User Interface(图形用户接口), 所谓图 ...

  2. ansible中include_tasks和import_tasks

    简介 本文主要总结下ansible里task调用的方法有哪些和它们的主要区别 ​随着要管理的服务不断增多,我们又没将task放到roles里,会发现playbook文件越来越大,内容也越来越多,管理起 ...

  3. 神经网络架构PYTORCH-前馈神经网络

    首先要熟悉一下怎么使用PyTorch来实现前馈神经网络吧.为了方便理解,我们这里只拿只有一个隐藏层的前馈神经网络来举例: 一个前馈神经网络的源码和注释如下:比较简单,这里就不多介绍了. class N ...

  4. 微信小程序分包加载实战

    "离线包"机制 微信小程序采用的是类似离线包加载方案,以转转小程序为例,当用户第一次打开时会先下载好所有代码,然后再加载页面:当用户再次进入转转小程序时,会直接使用已下载的代码,省 ...

  5. python读取pdf文件

    pdfplumber简介 Pdfplumber是一个可以处理pdf格式信息的库.可以查找关于每个文本字符.矩阵.和行的详细信息,也可以对表格进行提取并进行可视化调试. 文档参考https://gith ...

  6. linux的tar命令

    Linux下的tar压缩解压缩命令详解 tar -c: 建立压缩档案 -x:解压 -t:查看内容 -r:向压缩归档文件末尾追加文件 -u:更新原压缩包中的文件 这五个是独立的命令,压缩解压都要用到其中 ...

  7. JavaEE 要懂的小事:一、图解Http协议

    Writer      :BYSocket(泥沙砖瓦浆木匠) 微         博:BYSocket 豆         瓣:BYSocket FaceBook:BYSocket Twitter   ...

  8. HashTable原理与源码分析

    本文版权归 远方的风lyh和博客园共有,欢迎转载,但须保留此段声明,并给出原文链接,谢谢合作,如有错误之处忘不吝批评指正! HashTable内部存储结构 HashTable内部存储结构为数组+单向链 ...

  9. .NET西安社区 [拥抱开源,又见 .NET] 活动简报

    拥抱开源, 又见 .NET」 随着 .NET Core的发布和开源,.NET又重新回到了人们的视野.除了开源.跨平台.高性能以及优秀的语言特性,越来越多的第三方开源库也出现在了Github上——包括M ...

  10. NuGet包和功能

    Microsoft.AspNetCore.Razor.Tools:提供TagHelper的智能感知提示和代码加粗高亮显示. Microsoft.AspNetCore.Session:管理会话状态的中间 ...