上一篇博客中我们使用了四元数法计算点集配准。

本篇我们使用SVD计算点集配准。

下面是《视觉slam十四讲》中的计算方法:

计算步骤如下:

我们看到,只要求出了两组点之间的旋转,平移是非常容易得到的,所以我们重点关注R的计算。展开关于R的误差项,得:

注意到第一项和R无关,第二项由于R'R=I,亦与R无关。因此,实际上优化目标函数变为:

接下来,我们介绍怎样通过SVD解出上述问题中最优的R,但关于最优性的证明较为复杂,感兴趣的读者请参考【50,51】,为了解R,先定义矩阵:

W是一个3*3的矩阵,对W进行SVD分解,得:

其中,为奇异值组成的对角矩阵,对角线元素从大到小排列,而U和V为正交矩阵,当W满秩时,R为:

解得R后,按式7.53求解t即可。

具体证明可以参考:

代码如下:

clear all;
close all;
clc; %生成原始点集
X=[];Y=[];Z=[];
for i=-::
for j=-::
x = i * pi / 180.0;
y = j * pi / 180.0;
X =[X,cos(y) * cos(x)];
Y =[Y,sin(y) * cos(x)];
Z =[Z,sin(x)];
end
end
P=[X(:)' Y(1:3000)' Z(:)']; %生成变换后点集
i=0.5;j=0.3;k=0.7;
Rx=[ ; cos(i) -sin(i); sin(i) cos(i)];
Ry=[cos(j) sin(j); ;-sin(j) cos(j)];
Rz=[cos(k) -sin(k) ;sin(k) cos(k) ; ];
R=Rx*Ry*Rz;
X=P*R + [0.2,0.3,0.4]; plot3(P(:,),P(:,),P(:,),'b.');
hold on;
plot3(X(:,),X(:,),X(:,),'r.'); %计算点集均值
up = mean(P);
ux = mean(X); P1=P-up;
X1=X-ux; %计算点集协方差
sigma=P1'*X1/(length(X1)); [u s v] = svd(sigma);
RR=u*v'; %计算平移向量
qr=ux-up*RR; %验证旋转矩阵与平移向量正确性
Pre = P*RR+qr; figure;
plot3(P(:,),P(:,),P(:,),'b.');
hold on;
plot3(X(:,),X(:,),X(:,),'r.');
plot3(Pre(:,),Pre(:,),Pre(:,),'go');

处理效果和四元数法一致:

原始点集:

其中蓝点为原始点集,红点为旋转平移后的点集。

配准后点集:

计算得到的旋转平移矩阵,通过对蓝点集进行转换得到绿点集,比较红点集与绿点集是否基本一致。

matlab练习程序(点集配准的SVD法)的更多相关文章

  1. matlab练习程序(对应点集配准的四元数法)

    这个算是ICP算法中的一个关键步骤,单独拿出来看一下. 算法流程如下: 1.首先得到同名点集P和X. 2.计算P和X的均值up和ux. 3.由P和X构造协方差矩阵sigma. 4.由协方差矩阵sigm ...

  2. 点集配准技术(ICP、RPM、KC、CPD)

    在计算机视觉和模式识别中,点集配准技术是查找将两个点集对齐的空间变换过程.寻找这种变换的目的主要包括:1.将多个数据集合并为一个全局统一的模型:2.将未知的数据集映射到已知的数据集上以识别其特征或估计 ...

  3. matlab练习程序(SUSAN检测)

    matlab练习程序(SUSAN检测) SUSAN算子既可以检测角点也可以检测边缘,不过角点似乎比不过harris,边缘似乎比不过Canny.不过思想还是有点意思的. 主要思想就是:首先做一个和原图像 ...

  4. (转)matlab练习程序(HOG方向梯度直方图)

    matlab练习程序(HOG方向梯度直方图)http://www.cnblogs.com/tiandsp/archive/2013/05/24/3097503.html HOG(Histogram o ...

  5. matlab练习程序(射线法判断点与多边形关系)

    依然是计算几何. 射线法判断点与多边形关系原理如下: 从待判断点引出一条射线,射线与多边形相交,如果交点为偶数,则点不在多边形内,如果交点为奇数,则点在多边形内. 原理虽是这样,有些细节还是要注意一下 ...

  6. matlab练习程序(PCA<SVD>)

    clear all;close all;clc;img1=imread('Corner.png');img2=imread('Corner1.png');img3=imread('Corner2.pn ...

  7. matlab练习程序(Levenberg-Marquardt法最优化)

    上一篇博客中介绍的高斯牛顿算法可能会有J'*J为奇异矩阵的情况,这时高斯牛顿法稳定性较差,可能导致算法不收敛.比如当系数都为7或更大的时候,算法无法给出正确的结果. Levenberg-Marquar ...

  8. matlab示例程序--Motion-Based Multiple Object Tracking--卡尔曼多目标跟踪程序--解读

    静止背景下的卡尔曼多目标跟踪 最近学习了一下多目标跟踪,看了看MathWorks的关于Motion-Based Multiple Object Tracking的Documention. 官网链接:h ...

  9. matlab练习程序(透视投影,把lena贴到billboard上)

    本练习程序是受到了这个老外博文的启发,感觉挺有意思,就尝试了一下.他用的是opencv,我这里用的是matlab. 过去写过透视投影,当时是用来做倾斜校正的,这次同样用到了透视投影,不过更有意思,是将 ...

随机推荐

  1. RESTful规范1

    RESTful规范 一 什么是RESTful REST与技术无关,代表的是一种软件架构风格,REST是Representational State Transfer的简称,中文翻译为"表征状 ...

  2. [转]phpredis中文手册

    本文是参考<redis中文手册>,将示例代码用php来实现,注意php-redis与redis_cli的区别(主要是返回值类型和参数用法). 目录(使用CTRL+F快速查找命令): Key ...

  3. 利用redis实现分布式锁

    分布式锁一般有三种实现方式: 1. 数据库乐观锁: 2. 基于ZooKeeper的分布式锁: 3. 基于Redis的分布式锁: 这里大概说一下三种方式的优缺点,数据库乐观锁优点是实现简单,只需要for ...

  4. XtraDB/InnoDB的文件格式(已提交到MariaDB官方手册)

    本文为mariadb官方手册:XtraDB/InnoDB File Format的译文. 原文:https://mariadb.com/kb/en/library/xtradbinnodb-file- ...

  5. FMDB源码解析

    上一篇博客讲述SQLite的使用,本篇将讲述FMDB源码,后面也会讲解SQLite在使用与FMDB的区别.本篇读下来大约20-30分钟,建议大家先收藏一下. FMDB是以OC方式封装SQLite中C语 ...

  6. NLP入门(一)词袋模型及句子相似度

      本文作为笔者NLP入门系列文章第一篇,以后我们就要步入NLP时代.   本文将会介绍NLP中常见的词袋模型(Bag of Words)以及如何利用词袋模型来计算句子间的相似度(余弦相似度,cosi ...

  7. JAVA实现ATM源代码及感想

    源代码 //20173626 信1705-2 郑锦package ATM;import java.io.IOException;import java.io.File;import java.io.F ...

  8. 【转载】在Centos系统上采用二进制文件部署Node.js环境

    Node.js 是一个基于 Chrome V8 引擎的 JavaScript 运行环境,用来方便地搭建快速的易于扩展的网络应用.Node.js 使用了一个事件驱动.非阻塞式 I/O 的模型,使其轻量又 ...

  9. 【Oracle 11gR2】静默安装 db_install.rsp文件详解

    #################################################################### ## Copyright(c) Oracle Corporat ...

  10. Nmap 命令操作详解

    首先在安装nmap 稳定版 https://nmap.org/download.html 选择安装目录 通过cmd  去使用也可以在 安装目录中找到 进行可视化操作 以下是nmap 命令 -sT TC ...