论文总结(negFIN: An efficient algorithm for fast mining frequent itemsets)
一、论文整体思路:
作者提出了一种基于前缀树的数据结构,NegNodeset,其实是对之前前缀树的一种改进,主要区别在于采用了位图编码,通过这种数据结构产生的算法称为negFIN。
negFIN算法高效有三个原因
二、问题定义
I= {i1,i2,…, init} 表示事务数据库所有项的集合,T表示每个事务,T⊆I ,DB = {T1,T2,…, Tnt} 是所有事务的集合
P称为k-项集,如果P⊆T ,那么事务T包含了项集P,support(P)是DB中包含P的百分比,如果support(P)大于min-support
我们就称P为频繁项集,频繁项集是2的nit 次方,nit = |I| 。
三、之前贡献
主要对前缀树的研究,结构1)Node-list,2)N-list,3)Nodeset,4)DisffNodeset (***先理解下前缀树和哈希树)
1) Node-list和N-list是通过对节点进行先序和后序排列,这两种数据结构产生的算法分别是PPV和PrePost频繁项集挖掘算法,
这两个算法的缺点消耗了大量内存;
2)对于这种情况,数据结构Nodeset将其进行改进,k-项集的获得通过取k-1项集的交集,算法为FIN,确定是对于一些数据集Nodeset基数太大;
3)为了将其进行改进,DiffNodest数据结构提出,k-项集的获得两个不同的k-1项集获得,算法为dFIN,算法的更快了。
4)文中提出了NegNodeset为了实现计算两个不同的DiffNodesets花费时间较长,主要利用的是位图,提出的算法negFIN;
四、相关工作
频繁项集挖掘算法
1)通过产生候选项集
比如Apriori算法,以及一些其他的算法,这种方法的主要缺点是需要多次扫描数据库。
2)模式增长方法
这种方式不会产生候选项集,也避免了多次扫描数据库,包括FP-tree和FP-growth算法,缺点:对于稀疏的数据集效率低,数据结构复杂。
3)前缀树方法
五、基本术语
F1频繁项集的集合,例如F1 = {e, b, a, c, d} ,
L1是根据支持度进行非降序排列的频繁项集L1 = [e, d, c, b, a] ,L1 = [i0,i1,…, inf - 1] ,nf=|F1|
k-项集P,Pk = ik…i2i1 ,ik>...>i2>i1
例如P = {e, b, d} ,P3 = bde ,对Pk进行位图编码BMC(Pk) = bnf - 1…b1b0 ,这里需要注意的是
BMC(node-path)分为两部分,主要部分和无关部分
论文总结(negFIN: An efficient algorithm for fast mining frequent itemsets)的更多相关文章
- 【HEVC帧间预测论文】P1.7 Content Based Hierarchical Fast Coding Unit Decision Algorithm
Content Based Hierarchical Fast Coding Unit Decision Algorithm For HEVC <HEVC标准介绍.HEVC帧间预测论文笔记> ...
- 论文阅读笔记二十六:Fast R-CNN (ICCV2015)
论文源址:https://arxiv.org/abs/1504.08083 参考博客:https://blog.csdn.net/shenxiaolu1984/article/details/5103 ...
- 【论文翻译】MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 论文链接:https://arxi ...
- 论文翻译:2020_TinyLSTMs: Efficient Neural Speech Enhancement for Hearing Aids
论文地址:TinyLSTMs:助听器的高效神经语音增强 音频地址:https://github.com/Bose/efficient-neural-speech-enhancement 引用格式:Fe ...
- algorithm@ Matrix fast power
一. 什么是快速幂: 快速幂顾名思义,就是快速算某个数的多少次幂.其时间复杂度为 O(log₂N), 与朴素的O(N)相比效率有了极大的提高.一般一个矩阵的n次方,我们会通过连乘n-1次来得到它的n次 ...
- 【论文阅读】A practical algorithm for distributed clustering and outlier detection
文章提出了一种分布式聚类的算法,这是第一个有理论保障的考虑离群点的分布式聚类算法(文章里自己说的).与之前的算法对比有以下四个优点: 1.耗时短O(max{k,logn}*n), 2.传递信息规模小: ...
- 第八周论文学习03 An Efficient Tree-based Power Saving Scheme for Wireless Sensor Networks with Mobile Sink
来源:IEEE Sensors Journal Year: 2016, Volume: 16, Issue: 20 Pages: 7545 - 7557, DOI: 10.1109/JSEN.2016 ...
- 论文总结(Frequent Itemsets Mining With Differential Privacy Over Large-Scale Data)
一.论文目标:将差分隐私和频繁项集挖掘结合,主要针对大规模数据. 二.论文的整体思路: 1)预处理阶段: 对于大的数据集,进行采样得到采样数据集并计算频繁项集,估计样本数据集最大长度限制,然后再缩小源 ...
- Apriori algorithm
本文是个人对spmf中example1. mining frequent itemsets by using the apriori algorithm的学习. What is Apriori? A ...
随机推荐
- Delphi数据集与记录
1.1Delphi数据库应用程序的层次结构 Delphi数据库应用程序通过数据存取构件对数据库进行访问,通过可视的数据构件(Data Control)将数据呈现给用户,并与用户进行交互.Delphi数 ...
- github上传时出现error: src refspec master does not match any解决办法22
1 error:src refspec master does not match any这个问题,我之前也遇到过,这次又遇到了只是时间间隔比较长了,为了防止以后再遇到类似问题,还是把这个方法简单记录 ...
- Jenkins+PowerShell持续集成环境搭建(八)邮件通知
1. 默认邮件功能: Jenkins自带的邮件功能比较简单,配置如下: 设置默认发件人地址: 2. Email Extension Plugin 为了能够更加灵活地使用邮件功能,需要安装Email E ...
- HTML协议
一,HTML协议 简介 超文本传输协议(英文:HyperText Transfer Protocol,缩写:HTTP)是一种用于分布式.协作式和超媒体信息系统的应用层协议.HTTP是万维网的数据通信的 ...
- 【XSY1544】fixed 数学 强连通图计数
题目描述 给你一个\(n\times n\)的方阵\(A\).定义方阵\(A\)的不动点\((i,j)\)为:\(\forall p,q\geq 0,(A^p)_{i,j}=(A^q)_{i,j} ...
- ramdom 中的 seed 的使用
实例 1 import ramdom # random.seed(10) # 未加 seed 的时候 for i in range(5): print(random.random()) # 每次输出结 ...
- Windows server install mrtg
由于MRTG使用Perl语言编写 , 安装ActivePerl http://downloads.activestate.com/ActivePerl/releases/5.20.1.2000/Act ...
- grafana安装使用及与zabbix集成
grafana简介Grafana是一个完全开源的度量分析与可视化平台,可对来自各种各种数据源的数据进行查询.分析.可视化处理以及配置告警. Grafana支持的数据源:官方:Graphite,Infl ...
- Hdoj 2454.Degree Sequence of Graph G 题解
Problem Description Wang Haiyang is a strong and optimistic Chinese youngster. Although born and bro ...
- 【BZOJ1022】小约翰的游戏(博弈论)
[BZOJ1022]小约翰的游戏(博弈论) 题面 BZOJ 题解 \(Anti-SG\)游戏的模板题目. #include<iostream> #include<cstdio> ...