<题目连接>

题目大意:

  给你一个(保证输入无重边,无自环)无向图,然后有下面Q条询问,每条询问为:问你u点与v点之间有几条(除了首尾两点外,其他点不重复)的路径.如果有0条或1条输出0或1,如果有2条以上,输出”two or more”.

解题分析:

  我们可以用并查集判断两点之间是否有路径相连通,如果两点不连通,则直接输出0即可。至于判断两点之间有几条不重复的路径相连,则是通过这两点是否属于同一点双连通分量来判断。不过需要注意的是,我们应该排除只有两个点的点双连通分量这一特殊情况。所以综上,只要待查询的两点属于点数大于2的点双连通分量,则直接输出"two or more"(在已经判断这两点连通的情况下),否则输出"one"。

#include <bits/stdc++.h>
using namespace std; #define pb push_back
#define rp(i, s, t) for (int i = s; i < t; i++)
#define clr(a, b) memset(a, b, sizeof(a))
const int N = 5e3 + ;
int n, m, q;
int tot, bcc;
int dfn[N], low[N], col[N], fa[N]; //col[i]表示的是这个点当前所属的点双连通分量的编号
vector<int> G[N], BCC[N], bl[N]; //bl[i]表示第i个节点属于的所有点双连通分量编号
struct Edge {
int u, v;
Edge(int u = , int v = ) : u(u), v(v) {}
};
void init() {
bcc = tot = ;
clr(dfn, );clr(col, ); clr(fa, -);
rp(i, , n) G[i].clear(), bl[i].clear();
}
stack<Edge> stk;
void Tarjan(int u, int fa) {
low[u] = dfn[u] = ++tot;
rp(i, , G[u].size()) {
int v = G[u][i];
if (v == fa) continue;
Edge e = Edge(u, v);
if (!dfn[v]) {
stk.push(e);
Tarjan(v, u);
low[u] = min(low[v], low[u]);
if (low[v] >= dfn[u]) { //割点
bcc++;
BCC[bcc].clear();
while (true) { //将栈中所有属于当前点双连通分量的点全部标记,注意,栈内存的是边
Edge x = stk.top(); stk.pop();
int st = x.u, ed = x.v;
if (col[st] != bcc) {
BCC[bcc].pb(st); //将u加入当前点双连通分量的节点集
col[st] = bcc; //标记u点当前所述的点双连通分量编号,防止在遍历同一点双连通分量的过程中重复将点标记
bl[st].pb(bcc); //一个点可能属于多个点双连通分量,bl[u]存储的是u点所属的多个点双连通分量
}
if (col[ed] != bcc) {
BCC[bcc].pb(ed);
col[ed] = bcc;
bl[ed].pb(bcc);
}
if (st == u && ed == v) break;
}
}
} else if (dfn[v] < dfn[u]) {
stk.push(e);
low[u] = min(low[u], dfn[v]);
}
}
}
int find(int i) {
if (fa[i] == -) return i;
return fa[i] = find(fa[i]);
}
int main() {
int ncase = ;
while (~scanf("%d%d%d", &n, &m, &q) && n) {
init();
while (m--) {
int u, v;
scanf("%d%d", &u, &v);
G[u].pb(v), G[v].pb(u); u = find(u), v = find(v); //并查集加边
if (u != v) fa[u] = v;
}
rp(i, , n) if (!dfn[i]) Tarjan(i, -);
printf("Case %d:\n", ++ncase);
while (q--) {
int u, v;
scanf("%d%d", &u, &v);
if (find(u) != find(v)) printf("zero\n"); //如果这两点不连通,直接输出0
else {
bool flag = false;
for (int i = ; i < bl[u].size() && !flag; i++) //遍历u和v所属的点双连通分量点集,判断是否有点双连通分量同时包含u和v
for (int j = ; j < bl[v].size() && !flag; j++) {
if (bl[u][i] == bl[v][j]) { //如果存在这样的点双连通分量
int ord = bl[u][i]; // ord代表该点双连通分量的编号
if (BCC[ord].size() > ) //要如果该点双连通分量中点数>2,才能说明u和v之间一定有2条即两条以上的道路
puts("two or more"), flag = true;
}
}
if (!flag) puts("one"); //如果不存在点数>2的点双连通分量同时包含u和v,则说明u和v之间只有一条边相连
}
}
}
}

2018-12-02

HDU 3749 Financial Crisis (点双连通+并查集)的更多相关文章

  1. HDU 3749 Financial Crisis(点-双连通分量)

    Because of the financial crisis, a large number of enterprises go bankrupt. In addition to this, oth ...

  2. HDU 3749 Financial Crisis 经济危机(点双连通分量)

    题意: 给一个图n个点m条边(不一定连通),接下来又q个询问,询问两个点是为“不相连”,“仅有一条路径可达”,“有两条及以上的不同路径可达”三种情况中的哪一种.注:两条以上的路径指的是路径上的点连1个 ...

  3. HDU 3749 Financial Crisis

    Financial Crisis 题意:给一个图,包含N ( 3 <= N <= 5000 )个点, M ( 0 <= M <= 10000 )条边 and Q ( 1 < ...

  4. HDU 1598 find the most comfortable road 并查集+贪心

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1598 find the most comfortable road Time Limit: 1000 ...

  5. HDU 1116 Play on Words(欧拉回路+并查集)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1116 Play on Words Time Limit: 10000/5000 MS (Java/Ot ...

  6. BZOJ4998 星球联盟(LCT+双连通分量+并查集)

    即要求动态维护边双.出现环时将路径上的点合并即可.LCT维护.具体地,加边成环时makeroot+access+splay一套把这段路径提出来,暴力dfs修改并查集祖先,并将这部分与根断开,视为删除这 ...

  7. ACM: hdu 1811 Rank of Tetris - 拓扑排序-并查集-离线

    hdu 1811 Rank of Tetris Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & % ...

  8. HDU(1856),裸的带权并查集

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1856 题意:朋友圈问题,A和B是朋友,B和C是朋友则A和C也是朋友,依次类推,题目的意思就是求最大的朋 ...

  9. HDU 1213 How Many Tables(模板——并查集)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1213 Problem Description Today is Ignatius' birthday ...

随机推荐

  1. oracle  的sqlplus 工具进行翻译的rlwrap 安装教程

    一:下载地址: 链接: https://share.weiyun.com/50R5pBb (密码:dQPc) 或者该QQ群下载: 二:该工具的安装步骤: [oracle@localhost ~]$ l ...

  2. kafka消息存储与partition副本原理

    消息的存储原理: 消息的文件存储机制: 前面我们知道了一个 topic 的多个 partition 在物理磁盘上的保存路径,那么我们再来分析日志的存储方式.通过 ll /tmp/kafka-logs/ ...

  3. 添加按钮 table增加一行 删减按钮 table去掉一行

    需求描述:做的一个AA新增功能,同时可以为这个即将新增的AA添加内容,而且AA的内容默认展示一行列表,点击添加按钮后出现下一行列表 解决思路:页面首先展示一个表头和列表的一行,作为默认展示的一行列表, ...

  4. 使用 declare 语句和strict_types 声明来启用严格模式:

    使用 declare 语句和strict_types 声明来启用严格模式: Caution: 启用严格模式同时也会影响返回值类型声明. Note: 严格类型适用于在启用严格模式的文件内的函数调用,而不 ...

  5. hdu1198 普通的并查集

    今天开始(第三轮)并查集,,之前学的忘了一些 本题很简单直接上代码 #include<iostream> #include<cstring> #include<cstdi ...

  6. Altium Designer (17.0) 打印输出指定的层

    Altium Designer (17.0) 例如,打印输出Top Overlay,Keep-Out Layer 1.先选择PCB文件,在单击按键Print Preview... 2.在预览区单击鼠标 ...

  7. 微信公众号开发调用自带地图 不显示(openLocation)

    1.需要在wx.config中声明需要使用的功能(openLocation) 例如: wx.config({ debug: false, // 开启调试模式,调用的所有api的返回值会在客户端aler ...

  8. python面向对象三大特性-多态

    import abc #利用abc模块实现抽象类 class All_file(metaclass=abc.ABCMeta): all_type='file' @abc.abstractmethod ...

  9. How does exercise keep your brain young?

    Exercise may protect the brain from disease and dementia as we age, but the mechanisms behind its be ...

  10. python-中缀转换后缀并计算

    这个好像比较简单. 前缀规则好像还没有理清楚. # coding = utf-8 class Stack: def __init__(self): self.items = [] # 是否为空 def ...