错了一个小地方调了一晚上。。。。

题目大意:

  给出最多2E+5种不同的矩形,每种有它的长h和宽v还有数量d,现在你要构造大矩形,使得在上面沿着平行于长或宽的边划刀,切出来的矩形正好是给出的所有矩形。问你能构造几种不同的大矩形。其中给出的矩形不能旋转。大矩形亦不能旋转,这意味着长为A,宽为B的大矩形和长为B,宽为A的大矩形不同。

题目分析:

  首先我们令矩形的总数目为tot。那么横着切p刀,竖着且q刀,则(p+1)(q+1)=tot。为了简便,下文的p表示横着切了p-1刀,q表示竖着切了q-1刀。

  以此为突破口,不难证明对于一组(p,q),矩形的大小固定。那么一组(p,q)可以作为大矩形的条件是什么?

  为了得到这个结论,我们设xi表示所有hi相同的矩形的数量,共m种不同的hi。我们不难发现xi是p的倍数。

  理由是这样子的:若xi不是p的倍数,那么在划分后必然在大矩形内有多余的长为hi的小矩形,这样必定非法。所以上面的结论得证!

  由于上面的理由,我们不难发现所有的hi相同的矩形必然集中在一坨,贯穿上下。即如果一列有一个是hi,那么一整列都是hi。

  现在我们解决了长上面的问题,还有宽没解决。

  首先我们发现如果一个v没有对应所有存在的h,那么这个必然无解。理由也很简单,一开始我安排好了p,现在安排q的时候受p的影响。

  同样的我们还能得出两个结论,一是任意的xi/p必然是v的因数,理由和上面相同;二是对于相同的v,它们占的行数相同,这个也很容易想到。

  现在我们通过对h和v的分析,得到了一个比较简单的O(n*sqrt(Σd))的算法,经过计算会发现超时,想办法解决这个问题。

  首先xi是p的倍数意味着p一定是xi的因数,这样p一定是所有xi的因数,也就是说p是所有xi的最大公因数的因数,我们解决了h上的问题。

  考虑v上的第一个结论如何优化,xi/p必然是v的因数。意味着我们可以找到一个si使得gcd(qi,v)=si,接着p一定是qi/si的倍数。所以p是所有qi/si的最小公倍数的倍数。这个可以通过唯一分解定理证明。

  至于v上的第二个结论,首先写出式子,推导后发现这是一个可以预判的式子,预处理的时候直接搞定。

  这样我们得到了一个O(sqrt(Σd))的算法。

代码:

  

 #include<bits/stdc++.h>
using namespace std; #define mp make_pair typedef long long ll;
typedef long double ld; const int maxn = ; int n,m;
struct node{ll h,v,d;}mt[maxn];
vector <pair<ll,ll> > V[maxn];
ll rt[maxn],tot;
ll mx;
ll zzll=; void init(){
for(int i=,now=;i<=n;i++){
if(mt[i].h == mt[now].h){V[m].push_back(mp(mt[i].v,mt[i].d));rt[m]+=mt[i].d;}
else{now = i; m++; V[m].push_back(mp(mt[i].v,mt[i].d)); rt[m]+=mt[i].d;}
}
} void read(){
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%lld%lld%lld",&mt[i].h,&mt[i].v,&mt[i].d); tot += mt[i].d;
}
sort(mt+,mt+n+,[](node a,node b){return a.h==b.h?a.v<b.v:a.h<b.h;});
init();
} int NoSolution(){
int hh = V[].size();
for(int i=;i<=m;i++) if(V[i].size()!=hh){return ;}
for(int i=;i<hh;i++){
ll kk = V[][i].second;
for(int j=;j<=m;j++){
ll jj = V[j][i].second;
if(V[j][i].first != V[][i].first){return ;}
if((ld)kk/(ld)rt[] != (ld)jj/(ld)rt[j]){return ;}
}
}
for(int i=;i<=m;i++){
for(int j=;j<V[i].size();j++){
ll mm = __gcd(rt[i],V[i][j].second);
mm = rt[i]/mm;
ll pp = __gcd(zzll,mm);
zzll = (zzll/pp)*mm;
if(zzll > mx){return ;}
}
}
return ;
} ll ans = ;
void solve(ll ht,ll kd){
if(ht % zzll == ){ans ++;}
} void work(){
mx = rt[];
for(int i=;i<=m;i++) mx = __gcd(mx,rt[i]);
if(NoSolution()){puts("");return;}
for(ll i=;i*i<=mx;i++){
if(mx % i != ) continue;
solve(i,tot/i);
if(i*i==mx)break;
solve(mx/i,tot/(mx/i));
}
printf("%lld",ans);
} int main(){
read();
work();
return ;
}

Codeforces963C Cutting Rectangle 【数学】的更多相关文章

  1. *Codeforces963C. Cutting Rectangle

    $n \leq 200000$种互不相同的矩形,给长宽和数量,都$\leq 1e12$,问有多少种大矩形只沿平行长和宽切正好切成这些矩形. 首先可以发现在一个合法情况下,有些矩形的位置是可以乱挪的,比 ...

  2. 【CF963C】Cutting Rectangle(数论,构造,map)

    题意: 思路:考虑构造最小的单位矩形然后平铺 单位矩形中每种矩形的数量可以根据比例算出来,为c[i]/d,其中d是所有c[i]的gcd,如果能构造成功答案即为d的因子个数 考虑如果要将两种矩形放在同一 ...

  3. Tinkoff Internship Warmup Round 2018 and Codeforces Round #475 (Div. 1)

    A. Alternating Sum 就是个等比数列,特判公比为 $1$ 的情况即可. #include <bits/stdc++.h> using namespace std; ; ; ...

  4. LeetCode之“数学”:Rectangle Area

    题目链接 题目要求: Find the total area covered by two rectilinear rectangles in a 2D plane. Each rectangle i ...

  5. UVA 11880 Ball in a Rectangle(数学+平面几何)

    Input: Standard Input Output: Standard Output � There is a rectangle on the cartesian plane, with bo ...

  6. CF1027C Minimum Value Rectangle 贪心 数学

    Minimum Value Rectangle time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  7. 【CF1027C】Minimum Value Rectangle(贪心,数学)

    题意:给定n根木棍,不允许拼接或折断,选择四根组成矩形,求所有合法矩形中周长平方与面积比最小的一个,输出拼成这个矩形的四根木棍 n<=1e6 思路:猜结论:答案必定从相邻的4根中产生 证明见ht ...

  8. ACM: SCU 4440 Rectangle - 暴力

     SCU 4440 Rectangle Time Limit:0MS     Memory Limit:0KB     64bit IO Format:%lld & %llu  Practic ...

  9. 二维剪板机下料问题(2-D Guillotine Cutting Stock Problem) 的混合整数规划精确求解——数学规划的计算智能特征

    二维剪板机下料问题(2-D Guillotine Cutting Stock Problem) 的混合整数规划精确求解——数学规划的计算智能特征 二维剪板机下料(2D-GCSP) 的混合整数规划是最优 ...

随机推荐

  1. [C#]SQL Server Express LocalDb(SqlLocalDb)的一些体会

    真觉得自己的知识面还是比较窄,在此之前,居然还不知道SqlLocalDb. SqlLocalDb是啥?其实就是简化SQL Server的本地数据库,可以这样子说,SQL Server既可以作为远程,也 ...

  2. 异步时代-java的协程路在何方

    面试官:你知道协程吗? 你:订机票的那个吗,我常用. 面试官:行,你先回去吧,到时候电话联系 ........ 很尴尬,但是事实是,很大一部分的程序员不知道协程是啥玩意,更大一部分的程序员,项目中没用 ...

  3. C#.NET 大型通用信息化系统集成快速开发平台 4.1 版本 - 对外不要提供Delete方法加强软件的安全性

    1:软件系统一般不怕外面的人,最怕有内鬼.2:软件系统不怕一万,就怕万一,最好不要对外有漏洞,能不提供Delete方法就不提供.3:特别是不要有能远程调用的Delete方法,那就是出了事情都无法找到是 ...

  4. pycharm异常问题之Unable to save settings: Failed to save settings. Please restart PyCharm

    pycharm异常之Unable to save settings: Failed to save settings. Please restart PyCharm 今天一不小心将电脑关了,但是关机之 ...

  5. Vue向后端请求课程展示

    1.Vue结构 App.vue <template> <div id="app"> <router-link to="/index" ...

  6. hadoop和java 配置环境变量的的tar

    第一步:打开工具上传tar包 如下图 第二步:在文件路径下查看是否上传成功 第三步:解压tar包               tar -zxvf hadoop.2.6.5.tar.gz 第四步:配置环 ...

  7. Linux reboot与init 6区别

    Reboot与init 6的区别 - flyingcloud_2008的专栏 - CSDN博客https://blog.csdn.net/flyingcloud_2008/article/detail ...

  8. nmon for Linux & Java

    nmon for Linux | Main / HomePagehttp://nmon.sourceforge.net/pmwiki.php Java Nmon Analyser download | ...

  9. [转帖]TCP和UDP的135、137、138、139、445端口的作用

    TCP和UDP的135.137.138.139.445端口的作用 https://www.cnblogs.com/IvanChen/p/4500698.html 竟然不知道 端口具体是干什么的.. 如 ...

  10. Day 5-3 多态与多态性

    多态与多态性 鸭子类型 多态与多态性 多态:一类事物有多种形态.比如,动物有多种形态,人,狗,猪,豹子.水也有多种形态,冰,雪,水蒸气. #多态:同一类事物的多种形态 import abc class ...