hive复杂类型实战
1、hive 数组简单实践:
CREATE TABLE `emp`(
`name` string,
`emps` array<string>)
ROW FORMAT SERDE
'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe'
STORED AS INPUTFORMAT
'org.apache.hadoop.mapred.TextInputFormat'
OUTPUTFORMAT
'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION
'hdfs://node:9000/user/hive/warehouse/daxin.db/emp' 存入数据,借助insert into ... select : insert into emp select "daxin",array('zhangsan','lisi','wangwu') from ptab; hive> select * from emp;
OK
daxin ["zhangsan","lisi","wangwu"]
mali ["jack","lixisan","fala"]
Time taken: 0.045 seconds, Fetched: 2 row(s)
hive>
>
> select * from emp LATERAL VIEW explode(emps) tmp ;
OK
daxin ["zhangsan","lisi","wangwu"] zhangsan
daxin ["zhangsan","lisi","wangwu"] lisi
daxin ["zhangsan","lisi","wangwu"] wangwu
mali ["jack","lixisan","fala"] jack
mali ["jack","lixisan","fala"] lixisan
mali ["jack","lixisan","fala"] fala
Time taken: 0.047 seconds, Fetched: 6 row(s)
hive> select * from emp LATERAL VIEW explode(emps) tmp as empeeName ;
OK
daxin ["zhangsan","lisi","wangwu"] zhangsan
daxin ["zhangsan","lisi","wangwu"] lisi
daxin ["zhangsan","lisi","wangwu"] wangwu
mali ["jack","lixisan","fala"] jack
mali ["jack","lixisan","fala"] lixisan
mali ["jack","lixisan","fala"] fala
Time taken: 0.038 seconds, Fetched: 6 row(s)
hive>
> set hive.cli.print.header=true;
hive> select * from emp LATERAL VIEW explode(emps) tmp as empeeName ;
OK
emp.name emp.emps tmp.empeename
daxin ["zhangsan","lisi","wangwu"] zhangsan
daxin ["zhangsan","lisi","wangwu"] lisi
daxin ["zhangsan","lisi","wangwu"] wangwu
mali ["jack","lixisan","fala"] jack
mali ["jack","lixisan","fala"] lixisan
mali ["jack","lixisan","fala"] fala
Time taken: 0.046 seconds, Fetched: 6 row(s)
LATERAL VIEW explode(emps) tmp as empeeName 其中as后面的名字指定被拆分数组的字段名字为empeeName;
2、Hive复杂数据类型之Map
创建表语句:
CREATE TABLE `userinfo`(
`name` string,
`info` map<string,string>)
ROW FORMAT SERDE
'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe'
STORED AS INPUTFORMAT
'org.apache.hadoop.mapred.TextInputFormat'
OUTPUTFORMAT
'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION
'hdfs://node:9000/user/hive/warehouse/daxin.db/userinfo' 插入数据:
insert into userinfo select "daxin",map("addr","liaoning") from ptab limit ;
插入数据时候注意,map的key与value之间使用逗号分隔,而不是使用冒号!!!
hive> select * from userinfo;
OK
userinfo.name userinfo.info
daxin {"addr":"liaoning"}
Time taken: 0.04 seconds, Fetched: 1 row(s)
带有where条件查询:
hive> select * from userinfo where info['addr']="liaoning";
OK
userinfo.name userinfo.info
daxin {"addr":"liaoning"}
Time taken: 0.041 seconds, Fetched: 1 row(s)
hive> insert into userinfo select "zhansan",map("addr","beijing","sex","boy","word","coder") from ptab limit 1;
Query ID = liuguangxin_20181102201144_b74fcc0e-1c2d-49e6-9268-bdc97e79ba86
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
set mapreduce.job.reduces=<number>
Starting Job = job_1541155477807_0005, Tracking URL = http://10.12.141.138:8099/proxy/application_1541155477807_0005/
Kill Command = /Users/liuguangxin/bigdata/hadoop/bin/hadoop job -kill job_1541155477807_0005
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2018-11-02 20:11:50,234 Stage-1 map = 0%, reduce = 0%
2018-11-02 20:11:55,370 Stage-1 map = 100%, reduce = 0%
2018-11-02 20:11:59,478 Stage-1 map = 100%, reduce = 100%
Ended Job = job_1541155477807_0005
Loading data to table daxin.userinfo
Table daxin.userinfo stats: [numFiles=2, numRows=2, totalSize=60, rawDataSize=58]
MapReduce Jobs Launched:
Stage-Stage-1: Map: 1 Reduce: 1 HDFS Read: 9552 HDFS Write: 110 SUCCESS
Total MapReduce CPU Time Spent: 0 msec
OK
_c0 _c1
Time taken: 15.827 seconds
hive> select * from userinfo where info['addr1']="liaoning"; //当map中不存在key时候不会报错,只会查询不到数据
OK
userinfo.name userinfo.info
Time taken: 0.04 seconds
查看信息个数:
hive > select size(info) as infoCount,* from userinfo ;
OK
infocount userinfo.name userinfo.info
1 daxin {"addr":"liaoning"}
3 zhansan {"addr":"beijing","sex":"boy","word":"coder"}
Time taken: 0.045 seconds, Fetched: 2 row(s)
3、hive复杂数据类型Map
CREATE TABLE `fixuserinfo`(
`name` string,
`info` struct<addr:string,mail:string,sex:string>)
COMMENT 'the count of info is fixed'
ROW FORMAT SERDE
'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe'
STORED AS INPUTFORMAT
'org.apache.hadoop.mapred.TextInputFormat'
OUTPUTFORMAT
'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION
'hdfs://node:9000/user/hive/warehouse/daxin.db/fixuserinfo'
插入数据:
参考一下:https://blog.csdn.net/xiaolang85/article/details/51330634
创建数据表
CREATE TABLE test(id int,course struct<course:string,score:int>)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t'
COLLECTION ITEMS TERMINATED BY ',';
数据
1 english,80
2 math,89
3 chinese,95
入库
LOAD DATA LOCAL INPATH '/home/hadoop/test.txt' OVERWRITE INTO TABLE test;
查询
hive> select * from test;
OK
1 {"course":"english","score":80}
2 {"course":"math","score":89}
3 {"course":"chinese","score":95}
Time taken: 0.275 seconds
hive> select course from test;
{"course":"english","score":80}
{"course":"math","score":89}
{"course":"chinese","score":95}
Time taken: 44.968 seconds
select t.course.course from test t;
english
math
chinese
Time taken: 15.827 seconds
hive> select t.course.score from test t;
80
89
95
Time taken: 13.235 seconds
4、数组查询数据的 : LATERAL VIEW explode(emps) tmp as empeeName使用:
对某一个字段进行展开,并将该字段指定一个名字,对于一个 表有多个array类型的表而言,每一条记录展开之后产生的记录数是该行记录的展开数组个数相乘,例如:
CREATE TABLE `empinfo`(
`name` string,
`emps` array<string>,
`sal` array<string>);
表中的数据:
empinfo.name empinfo.emps empinfo.sal
daxin ["zhangsan","lisi","wangwu"] ["99999","88888","999999"]
mali ["11","22","33"] ["6666","7777","8888"]
查询语句:

按照emps与sal进行展开,对与第一行数据的每一个数组都是3个元素,因此展开之后变成9条数据!第二行同理,所以共计18行记录!!!
5、Hive在线查看函数文档

参考官网:https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF
参考:https://blog.csdn.net/wangtao6791842/article/details/37966035
hive复杂类型实战的更多相关文章
- Scala 深入浅出实战经典 第54讲:Scala中复合类型实战详解
王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-64讲)完整视频.PPT.代码下载:百度云盘:http://pan.baidu.com/s/1c0noOt6 ...
- Scala 深入浅出实战经典 第53讲:Scala中结构类型实战详解
王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-64讲)完整视频.PPT.代码下载:百度云盘:http://pan.baidu.com/s/1c0noOt6 ...
- Hive 表类型简述
Hive 表类型简述 表类型一.管理表或内部表Table Type: MANAGED_TABLE example: create table Inner(id int,name string, ...
- hive 复杂类型
hive提供一种复合类型的数据 struct:可以使用"."来存取数据 map:可以使用键值对来存取数据 array:array中存取的数据为相同类型,其中的数据可以通过下表获取数 ...
- 第54讲:Scala中复合类型实战详解
今天学习了scala的复合类型的内容,让我们通过实战来看看代码: trait Compound_Type1trait Compound_Type2class Compound_Type extends ...
- sqoop mysql导入hive 数值类型变成null的问题分析
问题描述:mysql通过sqoop导入到hive表中,发现有个别数据类型为int或tinyint的列导入后数据为null.设置各种行分隔符,列分隔符都没有效果. 问题分析:hive中单独将有问题的那几 ...
- 解决hue/hiveserver2对于hive date类型显示为NULL的问题
用户报在Hue中执行一条sql:select admission_date, discharge_date,birth_date from hm_004_20170309141149.inpatien ...
- Hive调优实战[转]
Hive优化总结 [转自:http://sznmail.iteye.com/blog/1499789] 优化时,把hive sql当做map reduce程序来读,会有意想不到的惊喜. 理解hadoo ...
- 转载:几种 hive join 类型简介
作为数据分析中经常进行的join 操作,传统DBMS 数据库已经将各种算法优化到了极致,而对于hadoop 使用的mapreduce 所进行的join 操作,去年开始也是有各种不同的算法论文出现,讨论 ...
随机推荐
- 元素的属性:client系列,scroll系列,offset系
元素的属性 div.attributes 是所有标签属性构成的数组集合 dir.classList 是所有class名构成的数组集合 在classList的原型链上看一看到从 add()和remove ...
- 2018-10-10 在浏览器插件中读取JSON资源文件
续前文: 浏览器插件实现GitHub代码翻译原型演示 此改进只为演示: 词典数据提取到json文件 · program-in-chinese/webextension_github_code_tran ...
- Android项目实战(四十二):启动页优化,去除短暂白屏或黑屏
大家会发现一个空项目,从手机桌面打开app是秒启动.但是对于自己开发的项目,有时会发现打开app的时候,会有短暂的1秒--2秒的白屏或者黑屏,然后才进入到程序界面. 个人理解为我们自己实现的Appli ...
- Android为TV端助力 布局、绘制、内存泄露、响应速度、listview和bitmap、线程优化以及一些优化的建议!
1.布局优化 首先删除布局中无用的控件和层级,其次有选择地使用性能较低的viewgroup,比如布局中既可以使用RelativeLayout和LinearLayout,那我们就采用LinearLayo ...
- winsock 编程(简单客户&服务端通信实现)
winsock 编程(简单客户&服务端通信实现) 双向通信:Client send message to Server, and if Server receive the message, ...
- git 入门教程之分支管理
背景 什么是分支?简单地说,分支就是两个相对独立的时间线,正常情况下,独立的时间线永远不会有交集,彼此不知道对方的存在,只有特定情况下,两条时间线才会相遇,因为相遇,所以相知,因为相知,所以改变! 正 ...
- BitnamiRedmine配置邮件系统备忘
前几天安装的Redmine邮件系统存在问题,需要换一个,方法记录如下: 修改配置文件: cd ~/redmine/apps/redmine/htdocs/config vi configuration ...
- linux hadoop2.x快速安装
........ http://blog.csdn.net/se7en_q/article/details/47258007
- C# 实体/集合差异比较,比较两个实体或集合值是否一样,将实体2的值动态赋值给实体1(名称一样的属性进行赋值)
/// <summary> /// 实体差异比较器 /// </summary> /// <param name="source">源版本实体& ...
- web前端(14)—— JavaScript的数据类型,语法规范1
编辑器选择 对js的编辑器选用,有很多,能对html编辑的,也能对js编辑,比如notepad++,visual studio code,webstom,atom,pycharm,sublime te ...