Factorized Hidden Variability Learning For Adaptation Of Short Duration Language Identification Models
基于因子分解的隐层变量学习,应用于短语句语种识别模型的自适应
LFVs(Language Feature Vectors,语种特征向量)[11],与BSVs(Bottleneck Speaker Vectors)类似,即瓶颈特征
3.1. 神经元调制
由于说话人特性的变化反映在语音信号中,因此将表示说话人适应声学特性的特征拼接到特征中。如VTLN或fMLLR,是直接对声学特征进行操作的自适应方法。可以训练一个说话人自适应系统以基于说话人属性直接对输入特征进行转换,这样效果与基于i-Vector的自适应类似[8]。但是与说话人变化特性相比,语言特性是更高阶的概念。在某些方面基于声学。例如,具有相同音素的多种语言,可以在某种程度上可以观察到语言特定属性。但是,声学特征变换适应性方法无法考虑到音位配列学或者不同声学单元集的知识。在这里,在更深层次的DNN处添加特征可能会改善自适应性。[17]基于Meta-PI网络进行了尝试。关键点是使用Meta-PI连接,它允许通过将隐层单元乘以系数来调制神经元的输出。应用于语种自适应,我们用LFV来对隐藏层的输出进行调制。基于语种特征的调制,LSTM单元的输出被衰减或增强。这迫使隐藏层中的单元基于语种特征来学习或适应。调制可以被认为与Dropout有关[18],其中网络连接以随机概率被丢弃。在结果部分中,我们将此方法称为"LFV调制"。
所示的网络配置。基本架构受百度Deepspeech 2的启发。它将两个TDNN/CNN层与4个双向LSTM层组合在一起。输出层是一个前馈层,它将最后一个LSTM层的输出映射到目标。将每层LSTM单元维数设定为LFV维数的数倍。这样就可以构建包含相同单位数量的LSTM单元的隐藏层组。然后用LFV的某一维对每组的输出进行调制。该图显示了两种配置,"LFV 拼接"和"LFV 调制",但一次只应用一种方法。在初步实验中,我们得出在第二个LSTM层的输出处进行调制可以获得最佳性能。

Factorized Hidden Variability Learning For Adaptation Of Short Duration Language Identification Models的更多相关文章
- Coursera Deep Learning笔记 序列模型(三)Sequence models & Attention mechanism(序列模型和注意力机制)
参考 1. 基础模型(Basic Model) Sequence to sequence模型(Seq2Seq) 从机器翻译到语音识别方面都有着广泛的应用. 举例: 该机器翻译问题,可以使用" ...
- ICLR 2013 International Conference on Learning Representations深度学习论文papers
ICLR 2013 International Conference on Learning Representations May 02 - 04, 2013, Scottsdale, Arizon ...
- Machine and Deep Learning with Python
Machine and Deep Learning with Python Education Tutorials and courses Supervised learning superstiti ...
- Deep Learning in a Nutshell: History and Training
Deep Learning in a Nutshell: History and Training This series of blog posts aims to provide an intui ...
- Machine Learning for Developers
Machine Learning for Developers Most developers these days have heard of machine learning, but when ...
- How do I learn machine learning?
https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644 How Can I Learn X? ...
- (转) Ensemble Methods for Deep Learning Neural Networks to Reduce Variance and Improve Performance
Ensemble Methods for Deep Learning Neural Networks to Reduce Variance and Improve Performance 2018-1 ...
- (转)Understanding, generalisation, and transfer learning in deep neural networks
Understanding, generalisation, and transfer learning in deep neural networks FEBRUARY 27, 2017 Thi ...
- Rolling in the Deep (Learning)
Rolling in the Deep (Learning) Deep Learning has been getting a lot of press lately, and is one of t ...
随机推荐
- 第三十篇-ToolBar的使用
效果图: 创建标题栏,将原本的Title隐藏,并在菜单栏中设置选项. 一.拖入一个ToolBar组件,并在res/values/styles.xml中将原本的标题栏隐藏,添加<item name ...
- 基本数据类型补充,深浅copy
#str s=' ' #只能是以至少一个空格组成的字符串(全空格) print(s.isspace()) #tuple 当元组只有一个元素组成,并没有",",则该元素是什么数据类型 ...
- Redis命令:scan实现模糊查询
转: Redis命令:scan实现模糊查询 2017年12月31日 16:54:33 琦彦 阅读数:22893 标签: redis数据库Redis命令scan模糊查询 更多 个人分类: Redis 所 ...
- HTML学习笔记Day7
一.position定位属性,检索对象的定位方式 1.语法:{position:static(无特殊定位)/absolute(绝对定位)/relative(相对定位)/fixed(固定定位):} 1) ...
- position:fixed固定定位的用法
一.position:fixed:固定定位 1.实现某个元素在可视窗口的居中位置显示 1)给自身设置宽高: 2)给自身加position:fixed: 3)用margin向左移动自身宽度的一半,向上移 ...
- (计算几何基础 叉积) nyoj68-三点顺序
68-三点顺序 内存限制:64MB 时间限制:1000ms 特判: No通过数:27 提交数:43 难度:3 题目描述: 现在给你不共线的三个点A,B,C的坐标,它们一定能组成一个三角形,现在让你判断 ...
- 构造方法中关键字-- super
package lijun.cn.demo4; public class Person { int num =777; public Person(){ System.out.println(&quo ...
- 使用docker-compose部署nginx
1.新建docker-compose.yml文件,文件的基本模板如下:(由于yml格式比较严格,注意空格缩进) version: '2.0' services: nginx: restart: a ...
- 根据指定的key,将二维数组的value转换为string,适用于mysql的in查询
function array_unique_join($arr,$param){ $utm_source_arr = array_unique(array_column($arr,$param)); ...
- HTTP常用头部信息
下面用例子的形式来记录下常用的一些Http头部信息 Request Header: GET /sample.Jsp HTTP/1.1 //请求行 Host: www.uuid.online/ // ...