python-图像处理(映射变换)
做计算机视觉方向,除了流行的各种深度学习算法,很多时候也要会基础的图像处理方法。
记录下opencv的一些操作(图像映射变换),日后可以方便使用
先上一张效果图

图二和图三是同一种方法,只是变换矩阵不同,都是3点映射变换
图四使用的是4点映射变换
--------------------------------------------------------------------------------------------------------------------------------------------------
简单介绍下原理
图像都知道是3维(通道)的矩阵,前两维就是由1字节(0-255)数字填充的二维数组。数字大小代表颜色的深浅。
我们把变换前的原图作为x和y。变换后的图为u和v。将[x,y,1]乘上变换矩阵就可以得到对应的新的u和v。不同的变换矩阵有不同的作用(不同的变换方式)

-------------------------------------------------------------------------------------------------------------------------------------------------
所以现在就是求不同变换对应的不同的变换矩阵的过程
求这个矩阵 在opencv中直接就有方法
只需提供原图的三个点和你要变换之后的三个点的映射位置(3个原图点,3个映射点)就可以求出这个变换矩阵

当然了 你会发现不管怎么调整映射点 都不能任意变换
因为只给三个点时 变换之后的图其实只是原图的等比缩放,并不能做到随意映射的效果
这里opencv也提供了 四个点和四个映射的方法 求出对应的变换矩阵 ,最终得到任意映射的效果

代码如下:
# coding=gbk
import cv2
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号 img=cv2.imread(r"test6.jpg")
img = img[:,:,[2,1,0]]
cols,rows,ch=img.shape pts1 = np.float32([[0, 0], [cols - 1, 0], [0, rows - 1]]) #三点映射
pts2 = np.float32([[0, 0], [cols - 1, 0], [80, rows - 1]])
pts21 = np.float32([[0, 0], [cols - 1, 0], [0, rows - 1]])
pts22 = np.float32([[cols * 0.2, rows * 0.1], [cols * 0.9, rows * 0.2], [cols * 0.1, rows * 0.9]])
pts31 = np.float32([[0, 0], [cols - 1, 0], [0, rows - 1],[cols - 1,rows-1]]) #四点映射
pts32 = np.float32([[0, 0], [cols - 1, 0], [50, rows - 1],[cols - 50,rows-50]]) M = cv2.getAffineTransform(pts1,pts2) #求三点映射的变换矩阵
M2= cv2.getAffineTransform(pts21,pts22)
M3 = cv2.getPerspectiveTransform(pts31,pts32) #求四点映射的变换矩阵 dst = cv2.warpAffine(img,M,(rows+120,cols)) #三点映射的变换函数
dst2 = cv2.warpAffine(img,M2,(rows,cols))
dst3 = cv2.warpPerspective(img,M3,(rows+40,cols+50)) #四点映射的变换函数 plt.subplot(221)
plt.imshow(img)
plt.title("原图")
plt.subplot(222)
plt.imshow(dst)
plt.title("投影变换")
plt.subplot(223)
plt.imshow(dst2)
plt.title("仿射原图变换")
plt.subplot(224)
plt.imshow(dst3)
plt.title("仿射不规则变换") plt.show()
python-图像处理(映射变换)的更多相关文章
- Python图像处理库:Pillow 初级教程
Python图像处理库:Pillow 初级教程 2014-09-14 翻译 http://pillow.readthedocs.org/en/latest/handbook/tutorial.html ...
- Python图像处理之验证码识别
在上一篇博客Python图像处理之图片文字识别(OCR)中我们介绍了在Python中如何利用Tesseract软件来识别图片中的英文与中文,本文将具体介绍如何在Python中利用Tesseract ...
- 【python图像处理】图像的缩放、旋转与翻转
[python图像处理]图像的缩放.旋转与翻转 图像的几何变换,如缩放.旋转和翻转等,在图像处理中扮演着重要的角色,python中的Image类分别提供了这些操作的接口函数,下面进行逐一介绍. 1.图 ...
- Python图像处理库(1)
转自:http://www.ituring.com.cn/tupubarticle/2024 第 1 章 基本的图像操作和处理 本章讲解操作和处理图像的基础知识,将通过大量示例介绍处理图像所需的 Py ...
- Python图像处理库:PIL中Image,ImageDraw等基本模块介绍
Python图像处理库:PIL中Image,ImageDraw等基本模块介绍 标签: 图像处理PILPYTHON 2016-08-19 10:58 461人阅读 评论(0) 收藏 举报 分类: 其他 ...
- Python图像处理库PIL中图像格式转换(一)
在数字图像处理中,针对不同的图像格式有其特定的处理算法. 所以,在做图像处理之前,我们须要考虑清楚自己要基于哪种格式的图像进行算法设计及事实上现.本文基于这个需求.使用python中的图像处理库PIL ...
- python 图像处理中二值化方法归纳总结
python图像处理二值化方法 1. opencv 简单阈值 cv2.threshold 2. opencv 自适应阈值 cv2.adaptiveThreshold 3. Otsu's 二值化 例子: ...
- python图像处理:一福变五福
快过年了,各种互联网产品都出来撒红包.某宝一年一度的“集五福活动”更是成为每年的必备活动之一. 虽然到最后每人大概也就分个两块钱,但作为一个全民话题,大多数人还是愿意凑凑热闹. 毕竟对于如今生活在大城 ...
- Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像
前文传送门: 「Python 图像处理 OpenCV (1):入门」 普通操作 1. 读取像素 读取像素可以通过行坐标和列坐标来进行访问,灰度图像直接返回灰度值,彩色图像则返回B.G.R三个分量. 需 ...
- Python 图像处理 OpenCV (3):图像属性、图像感兴趣 ROI 区域及通道处理
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 图像属性 图像 ...
随机推荐
- [精华][推荐]CAS SSO单点登录服务端客户端学习
1.通过下载稳定版本的方式下载cas的相关源码包,如下: 直接选择4.2.1的稳定代码即可 2.我们项目中的版本版本使用maven apereo远程库去下载 通过远程maven库下载cas-serve ...
- MySQL 聚合函数 控制流程函数
常用的聚合函数 1. AVG() 求平均值 mysql> AVG([DISTINCT] expr) -- 返回 expr 的平均值 mysql> select AVG(age) from ...
- java将图片传为设定编码值显示(可做刺绣)
import java.awt.Color; import java.awt.image.BufferedImage;import java.io.File;import java.io.IOExce ...
- 初识STM32中的USMART组件
今天看了usmart那部分的模块,感觉使我们stm32的学习变更加方便,你可以通过串口查看和检验你所注册过的函数. USMART配步骤1.将USMART包添加到工程中,头文件要包括path2.添加所需 ...
- 继承中的prototype与_proto_
继承的核心是原型链,它的基本思想是利用原型让一个引用类型继承另一个引用类型的属性和方法. 例:SubType.prototype = new SuperType (); var instance = ...
- unity中的Culling Mask
摄像机按层渲染 Camera.cullingMask = 1<<x;//渲染x层 Camera.cullingMask = ~(1<<x);//渲染除去x的所有层 Camera ...
- [转]构建高性能MySQL体系
来源:http://www.yunweipai.com/archives/21232.html 构建高性能MySQL系统涵盖从单机.硬件.OS.文件系统.内存到MySQL 本身的配置,以及schema ...
- 模板基础model
一.Django-model基础 1.1ORM 映射关系: 表名<---------->类名 字段<---------->属性 表记录<---------->类实例 ...
- Lucene用法示例
整理一下 ELK 和 Grafana 中会用到的 Lucene 用法: 通配符 示例1:过滤出 url 中包含 .pw/ 的 网址 url.keyword:*.pw\/* 正则表达式 示例1:过滤出 ...
- dell T130服务器加内存
需求:客户一台dell T130塔式服务器,由于本机只有一条8G内存,系统运行比较慢,需要再增加一条8G内存. 增加过程:第一次增加时由于没有注意机器上内存频率是2133的,所以新增加的一条2400频 ...