最优路径算法合集(附python源码)(原创)
主要的最优(最短)路径算法:
一、深度优先算法;二、广度优先算法;三、Dijstra最短路径;四、floyd最短路径(待);
一、深度优先算法
图的深度优先搜索(Depth First Search),和树的先序遍历比较类似。
它的思想:假设初始状态是图中所有顶点均未被访问,则从某个顶点v出发,首先访问该顶点,然后依次从它的各个未被访问的邻接点出发深度优先搜索遍历图,直至图中所有和v有路径相通的顶点都被访问到。 若此时尚有其他顶点未被访问到,则另选一个未被访问的顶点作起始点,重复上述过程,直至图中所有顶点都被访问到为止。
无向无权值网络

data = [[0, 0, 1, 1, 0, 1, 0], [0, 0, 1, 0, 0, 0, 0], [1, 1, 0, 1, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 1, 1, 0]]

def depth_first_search(data, data_index): # 有向、无向都可以满足要求
d1 = [data_index[0]]
index_now = 0 for i in range(len(data_index) - 1): # 只需要再寻找剩余的数值即可
state = 1
for j in range(len(data[index_now])): # 遍历可行路径
if data[index_now][j] == 1: # 如果该路径可行,则直接判断
if data_index[j] not in d1: # 判断原始输出中是否已有
d1.append(data_index[j])# 无,则加入
index_now = j
state = 0
break
if state:
for k in d1[-2::-1]: # 到达叶子后的操作
index_now = data_index.index(k)
for j in range(len(data[index_now])): # 遍历可行路径
if data[index_now][j] == 1: # 如果该路径可行,则直接判断
if data_index[j] not in d1: # 判断原始输出中是否已有
d1.append(data_index[j]) # 无,则加入
index_now = j
break
if index_now != data_index.index(k):
break # print(d1)
return d1 if __name__ == "__main__":
data = [[0, 0, 1, 1, 0, 1, 0], [0, 0, 1, 0, 0, 0, 0], [1, 1, 0, 1, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 1, 1, 0]]
data_w = [[0, 1, 0, 0, 0, 0, 0], [0, 0, 1, 0, 1, 1, 0], [0, 0, 0, 0, 1, 0, 0], [0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0]]
data_index = ['A', 'B', 'C', 'D', 'E', 'F', 'G']
# print(data_index.index('F'))
d1 = depth_first_search(data_w, data_index)
print(d1)
输入(无向图):
data = [[0, 0, 1, 1, 0, 1, 0], [0, 0, 1, 0, 0, 0, 0], [1, 1, 0, 1, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 1, 1, 0]]
输出:
['A', 'C', 'B', 'D', 'F', 'G', 'E']
二、广度优先算法
广度优先搜索算法(Breadth First Search),又称为"宽度优先搜索"或"横向优先搜索",简称BFS。
它的思想是:从图中某顶点v出发,在访问了v之后依次访问v的各个未曾访问过的邻接点,然后分别从这些邻接点出发依次访问它们的邻接点,并使得“先被访问的顶点的邻接点先于后被访问的顶点的邻接点被访问,直至图中所有已被访问的顶点的邻接点都被访问到。如果此时图中尚有顶点未被访问,则需要另选一个未曾被访问过的顶点作为新的起始点,重复上述过程,直至图中所有顶点都被访问到为止。
换句话说,广度优先搜索遍历图的过程是以v为起点,由近至远,依次访问和v有路径相通且路径长度为1,2...的顶点。

def breadth_first_search(data, data_index): # 无向图、有向图都可以的
d1 = [data_index[0]]
index_now = [0]
while len(d1) != len(data_index):
index_mid = []
for i in index_now: # i 为当前 父节点
for j in range(len(data[i])): # 查询父节点的子节点
if data[i][j] == 1:
if data_index[j] not in d1:
d1.append(data_index[j])
index_mid.append(j)
index_now = index_mid
print(d1)
return d1 if __name__ == "__main__":
data = [[0, 0, 1, 1, 0, 1, 0], [0, 0, 1, 0, 0, 0, 0], [1, 1, 0, 1, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 1, 1, 0]]
data_w = [[0, 1, 0, 0, 0, 0, 0], [0, 0, 1, 0, 1, 1, 0], [0, 0, 0, 0, 1, 0, 0], [0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0]]
data_index = ['A', 'B', 'C', 'D', 'E', 'F', 'G']
# print(data_index.index('F'))
d1 = breadth_first_search(data_w, data_index)
# print(d1)
输入(有向图):
data_w = [[0, 1, 0, 0, 0, 0, 0], [0, 0, 1, 0, 1, 1, 0], [0, 0, 0, 0, 1, 0, 0], [0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0]]
输出:
['A', 'B', 'C', 'E', 'F', 'D', 'G']
三、Dijstra最短路径(迪杰斯特拉算法)
参考视频:https://www.bilibili.com/video/av25829980?from=search&seid=7854146334299589449
迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法。是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题。迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。
OSPF协议 :Open Shortest Path First开放式最短路径优先,底层是迪杰斯特拉算法,是链路状态路由选择协议,它选择路由的度量标准是带宽,延迟。

def priority_queue(data, d0): # 自建优先队列格式
state = 1
for i in range(len(data)):
if d0[1] < data[i][1]:
data.insert(i, d0)
state = 0
break
if state:
data.append(d0)
return data def dijkstra_search(data, data_index, index):
parent = {} # 字典映射,更新前级节点
queue = [] # 优先队列
queue_out = [[data_index[index], data[index][index], 0]] # 输出队列 while len(queue_out) < len(data_index):
root_node = data_index.index(queue_out[-1][0]) # 当前最优节点
# print(root_node)
for i in range(len(data_index)): # 遍历所有的可能性
if data[root_node][i] != -1: # 检查是否可直连,是
if data_index[i] not in [x[0] for x in queue_out]:
queue = priority_queue(queue,
[data_index[i], data[root_node][i] + queue_out[-1][1], queue_out[-1][0]])
# print(queue) # 检查优先队列的情况 [['C', 1], ['B', 5]] for i in range(len(queue)): # 0,1
# print(queue[i][0])
if queue[i][0] not in [x[0] for x in queue_out]:
parent[queue[i][0]] = queue[i][-1]
queue_out.append(queue[i])
del queue[i]
break # print(queue)
# print('queue_out',queue_out)
return queue_out, parent if __name__ == "__main__": data_weight = [[0, 5, 1, -1, -1, -1], [5, 0, 2, 1, -1, -1], [1, 2, 0, 4, 8, -1], [-1, 1, 4, 0, 3, 6],
[-1, -1, 8, 3, 0, -1], [-1, -1, -1, 6, -1, -1]]
data_index = ['A', 'B', 'C', 'D', 'E', 'F']
# print(data_index.index('F'))
d1, d2 = dijkstra_search(data_weight, data_index, 3)
print(d1)
print(d2) target = 'A'
for i in d1:
if i[0] == target:
print('路径最短距离为:', i[1]) key = target
d3 = [target]
while key in d2.keys():
d3.insert(0, d2[key])
key = d2[key]
print('最优路线为:', d3)
输入:
data_weight = [[0, 5, 1, -1, -1, -1], [5, 0, 2, 1, -1, -1], [1, 2, 0, 4, 8, -1], [-1, 1, 4, 0, 3, 6], [-1, -1, 8, 3, 0, -1], [-1, -1, -1, 6, -1, -1]]
data_index = ['A', 'B', 'C', 'D', 'E', 'F']
d1, d2 = dijkstra_search(data_weight, data_index, 0)
输出:
路径最短距离为: 10
最优路线为: ['A', 'C', 'B', 'D', 'F']
四、floyd最短路径
!!!还没看这个算法!!!
最优路径算法合集(附python源码)(原创)的更多相关文章
- 【合集】TiDB 源码阅读系列文章
[合集]TiDB 源码阅读系列文章 (一)序 (二)初识 TiDB 源码 (三)SQL 的一生 (四)INSERT 语句概览 (五)TiDB SQL Parser 的实现 (六)Select 语句概览 ...
- Go合集,gRPC源码分析,算法合集
年初时,朋友圈见到的最多的就是新的一年新的FlAG,年末时朋友圈最多的也是xxxx就要过去了,你的FLAG实现了吗? 这个公众号2016就已经创建了,但截至今年之前从来没发表过文章,现在想想以前很忙, ...
- 微信小程序自动化测试最佳实践(附 Python 源码)
本文为霍格沃兹测试学院测试大咖公开课<微信小程序自动化测试>图文整理精华版. 随着微信小程序的功能和生态日益完善,很多公司的产品业务形态逐渐从 App 延升到微信小程序.微信公众号等.小程 ...
- 新浪微博登陆以及发送微博(附python源码)
原文链接(本人):https://blog.csdn.net/A5878989/article/details/76275855 说明 本文主要记录分析新浪微博登陆以及发送文字和图片微博的详细过程 分 ...
- 量化交易中VWAP/TWAP算法的基本原理和简单源码实现(C++和python)(转)
量化交易中VWAP/TWAP算法的基本原理和简单源码实现(C++和python) 原文地址:http://blog.csdn.net/u012234115/article/details/728300 ...
- 三种排序算法python源码——冒泡排序、插入排序、选择排序
最近在学习python,用python实现几个简单的排序算法,一方面巩固一下数据结构的知识,另一方面加深一下python的简单语法. 冒泡排序算法的思路是对任意两个相邻的数据进行比较,每次将最小和最大 ...
- [算法1-排序](.NET源码学习)& LINQ & Lambda
[算法1-排序](.NET源码学习)& LINQ & Lambda 说起排序算法,在日常实际开发中我们基本不在意这些事情,有API不用不是没事找事嘛.但必要的基础还是需要了解掌握. 排 ...
- python源码书籍
<Python源码剖析>一书现在很难买到,目前大部分都是电子书. 为了更好地利用Python语言,无论是使用Python语言本身,还是将Python与C/C++交互使用,深刻理解Pytho ...
- tomcat集群实现源码级别剖析
随着互联网快速发展,各种各样供外部访问的系统越来越多且访问量越来越大,以前Web容器可以包揽接收-逻辑处理-响应整个请求生命周期的工作,现在为了构建让更多用户访问更强大的系统,人们通过不断地业务解耦. ...
随机推荐
- 《修炼之道:.NET开发要点精讲》读书笔记(一)
CLR 公共语言运行库 没有CLR的存在,就不能讲该中间件转换成对应操作系统中的机器指令. 程序集是非完全编译的产物,它兼备了源代码和本地代码的特性,是一种介于源代码和本地代码之间的独立存在的一种数据 ...
- Android 系统启动过程简单记录
本文记录Android系统启动过程,包含从linux kernerl到luancher启动完成的过程: 1.linux内核完成系统设置后,会在系统文件中寻找‘init’文件,然后启动root进程或者说 ...
- JPA-04
一.JPQL JPA的查询语言(和SQL非常像,面向对象的查询语言) 有list集合可以用size看长度 分页:setFirstResult().setMaxResults(); 获取总条数:getS ...
- PhpSpreadsheet处理表格
介绍:PhpSpreadsheet是PHPExcel的下一个版本.它打破了兼容性,大大提高了代码库质量(命名空间,PSR合规性,最新PHP语言功能的使用等).由于所有努力都转移到了PhpSpreads ...
- 文件上传的三种模式-Java
文件上传的三种方式-Java 前言:因自己负责的项目(jetty内嵌启动的SpringMvc)中需要实现文件上传,而自己对java文件上传这一块未接触过,且对 Http 协议较模糊,故这次采用渐进的方 ...
- Convert Spaces to Tabs
:set tabstop=2 " To match the sample file :set noexpandtab " Use tabs, not spaces :%retab! ...
- 如何利用Python实现自动打卡签到
需求描述 我们需要登录考勤系统(网页端,非手机端)进行签到,如果不想每天都早早起来打卡签到,就可以通过写程序实现这一功能. 业务梳理 通过长时间的早起打卡签到发现规律,我每天只是不停的点击,签到,都是 ...
- roadhog如何支持除development和production外的其他环境变量配置
roadhog的build和start脚本分别对应了env/development和production,但实践中存在第三种开发环境(可能是预发或集成测试),配置和前两种也都不一样,但现在似乎没办法支 ...
- Spring Boot中使用Spring Security进行安全控制转载来自翟永超
我们在编写Web应用时,经常需要对页面做一些安全控制,比如:对于没有访问权限的用户需要转到登录表单页面.要实现访问控制的方法多种多样,可以通过Aop.拦截器实现,也可以通过框架实现(比如:Apache ...
- JAVA程序CPU 100%问题排查
做JAVA开发的同学一定遇到过的爆表问题,看这里解决 https://www.cnblogs.com/qcloud1001/p/9773947.html 本文由净地发表于云+社区专栏 记一次Ja ...