min-max 容斥

给定集合 \(S\) ,设 \(\max(S)\) 为 \(S\) 中的最大值,\(\min(S)\) 为 \(S\) 中的最小值,则:

\[\max(S)=\sum_{T\in S}(-1)^{|T|-1}\min(T)\]

这个东西叫 min-max容斥。

证明可以拿二项式反演证

例题

hdu4336 Card Collector

题目

有 \(n\) 种卡片,每一秒都有 \(P_i\) 的概率获得一张第 \(i\) 种卡片,求每张卡片都至少有一张的期望时间。

记 \(\max(S)\) 为 \(S\) 中最后获得的那种卡片第一次获得的期望时间, \(\min(S)\) 为 \(S\) 中第一个获得的那种卡片第一次获得的期望时间,仍然满足:

\[\max(S)=\sum_{T\in S}(-1)^{|T|-1}\min(T)\]

又因为 \(\min(T)=\frac 1{\sum\limits_{i\in T}P_i}\)

直接算就行了。

HAOI2015 按位或

题目

记 \(\max(S)\) 为 \(S\) 中最后被或到的元素第一次被或到的期望时间, \(\min(S)\) 为 \(S\) 中第一个被或到的元素第一次被或到的期望时间,还是那个式子:

\[\max(S)=\sum_{T\in S}(-1)^{|T|-1}\min(T)\]

但是这里互相不是独立的,怎么算 \(\min(T)\) 呢

\[\min(T)=\frac 1{\sum_{S\cap T\ne \emptyset} P_S}\]

也就是所有与 \(T\) 有交的集合 \(S\) 的概率之和

正难则反,求出所有与 \(T\) 交集为空的集合 \(S'\) 的概率之和,则它们的补集就是与 \(T\) 有交的集合 \(S\)。

求出 \(S'\) 的概率之和拿 \(1\) 再减掉就好啦。这个东西拿 \(FWT\) 或者 \(FMT\) 都阔以优化一哈。

推广 kth min-max 容斥

\[\max(S,k)=\sum_{T\in S}(-1)^{|T|-k}\cdot C(|T|-1,k-1)\cdot \min(T)\]

其中 \(\max(S,k)\) 表示 \(S\) 集合中第 \(k\) 大的元素。

例题

重返现世

题目

全网就这一道 kth min-max 容斥orz

首先式子还是那个式子,但是这里的 \(n\) 是 \(1000\),不能 \(2^n\) 枚举子集。考虑递推系数求解。

有 \(\min(T)=\frac m{sum(T)}\),其中 \(sum(T)=\sum\limits_{i\in T}p_i\)

设 \(f[i][j][x]\) 表示前 \(i\) 个元素,选的 \(sum(T)\) 为 \(j\),且将 \(k=x\) 代入式子后前面那一大串系数的值。

这样设状态的原因就是把等价类划分到了一起,并且容易递推。

由组合数的性质 \(C_n^m=C_n^{n-m},C_n^m=C_{n-1}^m+C_{n-1}^{m-1}\)

可以列出 \(DP\) 转移 \(f[i][j][x]=f[i-1][j][x]+(f[i-1][j-p[i]][x-1]-f[i-1][j-p[i]][x])\)

可以拿组合数证。

[总结] Min-Max容斥学习笔记的更多相关文章

  1. min-max容斥学习笔记

    min-max容斥学习笔记 前置知识 二项式反演 \[ f(n)=\sum_{i=0}^n\binom{n}{i}g(i)\Leftrightarrow g(n)=\sum_{i=0}^n(-1)^{ ...

  2. MinMax 容斥 学习笔记

    基本形式 \[ \max(S) = \sum_{T\subseteq S, T \neq \varnothing} (-1)^{|T|-1}\min(T) \] 证明 不提供数学证明. 简要讲一下抽象 ...

  3. javascript设计模式(张容铭)学习笔记 - 外观模式绑定事件

    有一个需求要为document对象绑定click事件来是想隐藏提示框的交互功能,于是小白写了如下代码: document.onclick = function(e) { e.preventDefaul ...

  4. javascript设计模式(张容铭)学习笔记 - 照猫画虎-模板方法模式

    模板方法模式(Template Method):父类中定义一组操作算法骨架,而降一些实现步骤延迟到子类中,使得子类可以不改变父类的算法结构的同时可重新定义算法中某些实现步骤. 项目经理体验了各个页面的 ...

  5. [模板] 容斥原理: 二项式反演 / Stirling 反演 / min-max 容斥 / 子集反演 / 莫比乌斯反演

    //待更qwq 反演原理 二项式反演 若 \[g_i=\sum_{j=1}^i {\binom ij} f_j\] , 则有 \[ f_i=\sum_{j=1}^i (-1)^{i-j} {i \ch ...

  6. 快速沃尔什变换 (FWT)学习笔记

    证明均来自xht37 的洛谷博客 作用 在 \(OI\) 中,\(FWT\) 是用于解决对下标进行位运算卷积问题的方法. \(c_{i}=\sum_{i=j \oplus k} a_{j} b_{k} ...

  7. min-max 容斥

    $\min - \max$ 容斥 Part 1 对于简单的$\min - \max$容斥有一般形式,表达为:$\max(S)=\sum\limits_{T\subseteq S}(-1)^{|T|-1 ...

  8. Min-max 容斥与 kth 容斥

    期望的线性性: \[E(x+y)=E(x)+E(y) \] 证明: \[E(x+y)=\sum_i \sum_j(i+j)*P(i=x,j=y) \] \[=\sum_i\sum_ji*P(i=x,j ...

  9. 15ecjtu校赛1006 (dfs容斥)

    Problem Description 在平面上有一个n*n的网格,即有n条平行于x轴的直线和n条平行于y轴的直线,形 成了n*n个交点(a,b)(1<=a<=n,1<=b<= ...

随机推荐

  1. Maven学习3(中央仓库)

    Maven项目在运行的时候,会首先找本地仓库是否有需要的jar,如果没有则去调用远程仓库. 解读Maven在仓库中的存储路径: 1.基于groupId准备路径,将句点分隔符转成路径分隔符,就是将  & ...

  2. python按照指定字符或者长度 截取字符串

    1.截取指定位置字符串 Python字符串可以理解为一个数组,获取某一部分的可以使用 str[beginIndex:endPosition],其中str为需要截取的字符串,beginIndex为需要截 ...

  3. Docker构建JDK环境

    创建目录mkdir oracle-jdk 构建文件touch Dockerfile # Docker for jdk-8u181 FROM centos:7 MAINTAINER ggza " ...

  4. 解压->静态库.a文件

    1. cd /Volumes/HHD/PQS/apple/Public 2. file com_PQS.a com_PQS.a: Mach-O universal binary with 5 arch ...

  5. sort()方法的应用(二)

    引用:函数作为参数 var fn_by = function(id) { return function(o, p) { var a, b; if (typeof o === "object ...

  6. Windows 10 IoT Core 17093 for Insider 版本更新

    新特性:  General bug fixes Enabled Miracast on Dragonboard. 已知的一些问题:   F5 driver deployment from Visual ...

  7. Android WebView 加载超长 JS 数据

    在之前的文章里面,我总结过WebView如何与网页交互,也就是Java如何和JS交互 —— Android WebView 总结 —— Java和JavaScript交互. 基于这篇文章,我们基本上能 ...

  8. 吴恩达机器学习笔记35-诊断偏差和方差(Diagnosing Bias vs. Variance)

    当你运行一个学习算法时,如果这个算法的表现不理想,那么多半是出现两种情况:要么是偏差比较大,要么是方差比较大.换句话说,出现的情况要么是欠拟合,要么是过拟合问题.那么这两种情况,哪个和偏差有关,哪个和 ...

  9. CentOS搭建FTP服务

    前言: 环境:centos7.5 64 位 正文: 使用 yum 安装 vsftpd yum install vsftpd -y 安装完成后,启动 FTP 服务: service vsftpd sta ...

  10. RestTemplate远程调用POST请求:HTTP 415 Unsupported Media Type

    这是本项目的接口 称为client @POST @Path("/{urlcode}") @Consumes(MediaTypes.JSON_UTF_8) @Produces(Med ...