\(\text{Problem}\)

\[\sum_{i=1}^n \varphi(i)
\]

\[\sum_{i=1}^n \mu(i)
\]

\(1 \le n < 2^{31}\)

\(Solution\)

终于开始学杜教筛了!!!

求积性函数 \(f\) 的前缀和,杜教筛可以低于线性

考虑卷积,构造积性函数 \(h = f * g\)

然后套路地推出一个重要的结论

\[g(1)S(n)=\sum_{i=1}^n(f*g)(i)-\sum_{i=2}^n S(\lfloor \frac n i \rfloor)
\]

这是一个递归式,快速计算这个式子

要能快速 \(h\) 的前缀和,最后的式子整出分块

提前筛出 \(n^{\frac 2 3}\) 以内 \(f\) 的前缀和,算到直接使用

用 \(\text{unordered_map}\) 存下已经计算过的 \(f\) 的前缀和,进行记忆化

然后对于本题就是利用

\[\varphi * I = ID
\]
\[\mu * I = \epsilon
\]

\(\text{Code}\)

#include<cstdio>
#include<tr1/unordered_map>
#define LL long long
using namespace std; tr1::unordered_map<int, LL> S_phi;
tr1::unordered_map<int, int> S_mu; const int MAXN = 3e6;
int vis[MAXN + 5], mu[MAXN + 5], prime[MAXN], totp;
LL phi[MAXN + 5];
inline void sieve()
{
vis[1] = mu[1] = phi[1] = 1;
for(register int i = 2; i <= MAXN; i++)
{
if (!vis[i]) prime[++totp] = i, mu[i] = -1, phi[i] = i - 1;
for(register int j = 1; j <= totp && prime[j] * i <= MAXN; j++)
{
vis[i * prime[j]] = 1;
if (i % prime[j]) phi[i * prime[j]] = phi[i] * phi[prime[j]], mu[i * prime[j]] = -mu[i];
else{phi[i * prime[j]] = phi[i] * prime[j]; break;}
}
}
for(register int i = 1; i <= MAXN; i++) mu[i] += mu[i - 1], phi[i] += phi[i - 1];
} LL Sum_phi(LL n)
{
if (n <= MAXN) return phi[n];
if (S_phi[n]) return S_phi[n];
LL res = n * (n + 1) / 2, j;
for(register LL i = 2; i <= n; i = j + 1)
{
j = n / (n / i);
res -= (j - i + 1) * Sum_phi(n / i);
}
return S_phi[n] = res;
}
int Sum_mu(LL n)
{
if (n <= MAXN) return mu[n];
if (S_mu[n]) return S_mu[n];
LL res = 1, j;
for(register LL i = 2; i <= n; i = j + 1)
{
j = n / (n / i);
res -= (j - i + 1) * Sum_mu(n / i);
}
return S_mu[n] = res;
} int main()
{
sieve();
int T; scanf("%d", &T);
for(; T; --T)
{
LL n; scanf("%lld", &n);
printf("%lld %d\n", Sum_phi(n), Sum_mu(n));
}
}

LG P4213【模板】杜教筛(Sum)的更多相关文章

  1. p4213 【模板】杜教筛(Sum)

    传送门 分析 我们知道 $\varphi * 1 = id$ $\mu * 1 = e$ 杜教筛即可 代码 #include<iostream> #include<cstdio> ...

  2. [模板] 杜教筛 && bzoj3944-Sum

    杜教筛 浅谈一类积性函数的前缀和 - skywalkert's space - CSDN博客 杜教筛可以在\(O(n^{\frac 23})\)的时间复杂度内利用卷积求出一些积性函数的前缀和. 算法 ...

  3. luoguP4213 [模板]杜教筛

    https://www.luogu.org/problemnew/show/P4213 同 bzoj3944 考虑用杜教筛求出莫比乌斯函数前缀和,第二问随便过,第一问用莫比乌斯反演来做,中间的整除分块 ...

  4. 洛谷P4213(杜教筛)

    #include <bits/stdc++.h> using namespace std; typedef long long LL; const int maxn = 3e6 + 3; ...

  5. LG4213 【模板】杜教筛(Sum)和 BZOJ4916 神犇和蒟蒻

    P4213 [模板]杜教筛(Sum) 题目描述 给定一个正整数$N(N\le2^{31}-1)$ 求 $$ans_1=\sum_{i=1}^n\varphi(i)$$ $$ans_2=\sum_{i= ...

  6. 51NOD 1222 最小公倍数计数 [莫比乌斯反演 杜教筛]

    1222 最小公倍数计数 题意:求有多少数对\((a,b):a<b\)满足\(lcm(a,b) \in [1, n]\) \(n \le 10^{11}\) 卡内存! 枚举\(gcd, \fra ...

  7. [洛谷P4213]【模板】杜教筛(Sum)

    题目大意:给你$n$,求:$$\sum\limits_{i=1}^n\varphi(i),\sum\limits_{i=1}^n\mu(i)$$最多$10$组数据,$n\leqslant2^{31}- ...

  8. P4213 【模板】杜教筛(Sum)

    \(\color{#0066ff}{题 目 描 述}\) 给定一个正整数\(N(N\le2^{31}-1)\) 求 \(\begin{aligned} ans_1=\sum_{i=1}^n\varph ...

  9. P4213【模板】杜教筛(Sum)

    思路:杜教筛 提交:\(2\)次 错因:\(\varphi(i)\)的前缀和用\(int\)存的 题解: 对于一类筛积性函数前缀和的问题,杜教筛可以以低于线性的时间复杂度来解决问题. 先要构造\(h= ...

  10. BZOJ3944: Sum(杜教筛模板)

    BZOJ3944: Sum(杜教筛模板) 题面描述 传送门 题目分析 求\(\sum_{i=1}^{n}\mu(i)\)和\(\sum_{i=1}^{n}\varphi(i)\) 数据范围线性不可做. ...

随机推荐

  1. vs同步配置

    做法(整个流程的过程):1.安装插件2.在GitHub上生成token3.获取gistid4.使用2,3步生成的token和gistid 1.在vscode上安装 settings sync 插件(我 ...

  2. PP视频(PPTV聚力)web接口分析

    前言 前几天我想看一个番剧, 正好搜索到了 PP视频,我才知道PP视频就是PPTV聚力,我想把番剧下载下来,结果发现视频竟然不是m3u8格式,而是多段mp4,所以简单的写了个脚本,可以在不登录的情况下 ...

  3. python-简单模块的使用

    提示:简单模块了解掌握 @ 目录 uuid模块 calendar日历模块 time模块 datetime模块 os模块 sys模块 random模块 json和pickle模块 json pickle ...

  4. 详记apache-poi的使用,将word,excel,ppt转换为html

    原文:https://blog.51cto.com/yunyaniu/5210961 java:Java的jar包之POI的简介.安装.使用方法(基于POI的转换-Word.Excel.Ppt等转ht ...

  5. 介绍一款高性能分布式MQTT Broker(带web)

    SMQTTX介绍 SMQTTX是基于SMQTT的一次重大技术升级,基于Java开发的分布式MQTT集群,是一款高性能,高吞吐量,并且可以完成二次开发的优秀的开源MQTT broker,主要采用技术栈: ...

  6. 全都会!预测蛋白质标注!创建讲义!解释数学公式!最懂科学的智能NLP模型Galactica尝鲜 ⛵

    作者:韩信子@ShowMeAI 机器学习实战系列:https://www.showmeai.tech/tutorials/41 深度学习实战系列:https://www.showmeai.tech/t ...

  7. 学习ASP.NET Core Blazor编程系列十七——文件上传(上)

    学习ASP.NET Core Blazor编程系列文章之目录 学习ASP.NET Core Blazor编程系列一--综述 学习ASP.NET Core Blazor编程系列二--第一个Blazor应 ...

  8. python 中变量的命名规则与注释

    变量命名规则 1.变量名必须是大小写英文字母.数字或下划线 _ 的组合,不能用数字开头,并且对大小写敏感 2.关键字不能用于命名变量,关键字一共有35个,以下为关键字的获取 注释 代码注释提高了代码的 ...

  9. week_1

    Andrew Ng机器学习笔记---by OrangeStar Week 1 A computer program is said to learn from experience E with re ...

  10. [OpenCV实战]52 在OpenCV中使用颜色直方图

    颜色直方图是一种常见的图像特征,顾名思义颜色直方图就是用来反映图像颜色组成分布的直方图.颜色直方图的横轴表示像素值或像素值范围,纵轴表示该像素值范围内像素点的个数或出现频率.颜色直方图属于计算机视觉中 ...