Tensorflow 是非常重视结构的, 我们得建立好了神经网络的结构, 才能将数字放进去, 运行这个结构.

这个例子简单的阐述了 tensorflow 当中如何用代码来运行我们搭建的结构.

创建数据

首先, 我们这次需要加载 tensorflow 和 numpy 两个模块, 并且使用 numpy 来创建我们的数据.

import tensorflow as tf
import numpy as np # create data
x_data = np.random.rand(100).astype(np.float32)
y_data = x_data*0.1 + 0.3

  计算误差,即损失值

接着就是计算 yy_data 的误差:

loss = tf.reduce_mean(tf.square(y-y_data))

传播误差

反向传递误差的工作就教给optimizer了, 我们使用的误差传递方法是梯度下降法: Gradient Descent 让后我们使用 optimizer 来进行参数的更新.

optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)

 

训练

到目前为止, 我们只是建立了神经网络的结构, 还没有使用这个结构. 在使用这个结构之前, 我们必须先初始化所有之前定义的Variable, 所以这一步是很重要的!

# init = tf.initialize_all_variables() # tf 马上就要废弃这种写法
init = tf.global_variables_initializer() # 替换成这样就好

  接着,我们再创建会话Session. 我们会在下一节中详细讲解 Session. 我们用Session来执行init初始化步骤. 并且, 用Sessionrun每一次 training 的数据. 逐步提升神经网络的预测准确性.

sess = tf.Session()
sess.run(init) # Very important for step in range(201):
sess.run(train)
if step % 20 == 0:
print(step, sess.run(Weights), sess.run(biases))

  

【小结】

对于Tensorflow的了解,我们将一起步步深入,逐步探索其中的奥妙之处...

TensorFlow的基础结构的更多相关文章

  1. 05基于python玩转人工智能最火框架之TensorFlow基础知识

    从helloworld开始 mkdir mooc # 新建一个mooc文件夹 cd mooc mkdir 1.helloworld # 新建一个helloworld文件夹 cd 1.helloworl ...

  2. TensorFlow应用实战 | TensorFlow基础知识

    挺长的~超出估计值了~预计阅读时间20分钟. 从helloworld开始 mkdir 1.helloworld cd 1.helloworldvim helloworld.py 代码: # -*- c ...

  3. Python玩转人工智能最火框架 TensorFlow应用实践 ☝☝☝

    Python玩转人工智能最火框架 TensorFlow应用实践 (一个人学习或许会很枯燥,但是寻找更多志同道合的朋友一起,学习将会变得更加有意义✌✌) 全民人工智能时代,不甘心只做一个旁观者,那就现在 ...

  4. 第二十二节,TensorFlow中的图片分类模型库slim的使用、数据集处理

    Google在TensorFlow1.0,之后推出了一个叫slim的库,TF-slim是TensorFlow的一个新的轻量级的高级API接口.这个模块是在16年新推出的,其主要目的是来做所谓的“代码瘦 ...

  5. 『TensorFlow Internals』笔记_源码结构

    零.资料集合 知乎专栏:Bob学步 知乎提问:如何高效的学习 TensorFlow 代码?. 大佬刘光聪(Github,简书) 开源书:TensorFlow Internals,强烈推荐(本博客参考书 ...

  6. TensorFlow学习笔记(六)循环神经网络

    一.循环神经网络简介 循环神经网络的主要用途是处理和预测序列数据.循环神经网络刻画了一个序列当前的输出与之前信息的关系.从网络结构上,循环神经网络会记忆之前的信息,并利用之前的信息影响后面节点的输出. ...

  7. 深度学习调用TensorFlow、PyTorch等框架

    深度学习调用TensorFlow.PyTorch等框架 一.开发目标目标 提供统一接口的库,它可以从C++和Python中的多个框架中运行深度学习模型.欧米诺使研究人员能够在自己选择的框架内轻松建立模 ...

  8. tensorflow源码解析之common_runtime-executor-上

    目录 核心概念 executor.h Executor NewLocalExecutor ExecutorBarrier executor.cc structs GraphView ExecutorI ...

  9. Apworks框架实战(六):使用基于Entity Framework的仓储基础结构

    在前面的章节中,我们已经设计了一个简单的领域模型,接下来我们希望能够实现领域模型的持久化及查询.在Apworks中,实现了面向Entity Framework.NHibernate以及MongoDB的 ...

  10. Tensorflow 官方版教程中文版

    2015年11月9日,Google发布人工智能系统TensorFlow并宣布开源,同日,极客学院组织在线TensorFlow中文文档翻译.一个月后,30章文档全部翻译校对完成,上线并提供电子书下载,该 ...

随机推荐

  1. Spark详解(03) - Spark3.0.0运行环境安装

    Spark详解(03) - Spark3.0.0运行环境安装 Spark运行模式 Spark常见部署模式: Local模式:在本地部署单个Spark服务 所谓的Local模式,就是不需要其他任何节点资 ...

  2. 《深度探索C++对象模型》第四章 Function语意学

    member function相对于nonmember function之间不存在效率之间的差别,因为编译器内部已经将"member 函数实体"转化为对等的"nonmem ...

  3. [阿里云]I+的一些探索

    I+是阿里云的关系网络分析,万物皆可联 使用中遇到的一些问题,特记录如下: 1.添加数据源 这个数据源是用于数据落地的存储,所以一定要选择<是> 2.配置对象信息 这一步就像是创建一个表来 ...

  4. vue小技巧-vue引入样式、修改难以修改的子组件内部标签样式

  5. Mac下vscode编辑器设置

    设置成中文 command + shift + p  搜索 configure langure    , 点击一下 ,然后选择ZH 设置其他东西 打开配置文件:vscode菜单: Code -> ...

  6. java中锁的概念/介绍

    前言 Java提供了种类丰富的锁,每种锁因其特性的不同,在适当的场景下能够展现出非常高的效率.本文旨在对锁相关源码(本文中的源码来自JDK 8和Netty 3.10.6).使用场景进行举例,为读者介绍 ...

  7. 线程基础知识02-CompletableFuture

    1 简介 Futrue可以监视目标线程调用call的情况,当你调用Future的get()方法以获得结果时,调用方的线程就被阻塞,直到目标线程的call方法结束并返回结果. 线程的实现方式有几种方式, ...

  8. MySQL 中的事务理解

    MySQL 中的事务 前言 原子性 一致性 持久性 并发事务存在的问题 脏读 幻读 不可重复读 隔离性 事务的隔离级别 事务隔离是如何实现 可重复读 和 读提交 串行化 读未提交 可重复读解决了幻读吗 ...

  9. pdf转MD、HTML、word网址收集

    PDF 转 Word,Excel,PPT,JPG 的网址:https://smallpdf.com/cn/pdf-to-word PDF 转 Markdown 的网址:https://pdf2md.m ...

  10. Binary &Op是什么

    前言 在并行开发时我们经常会用到Pstream::gather()函数或是全局函数reduce()或者其他,需要输入参数Binary &Op,本篇主要讨论Binary &Op是什么 t ...