# 机器学习之k均值聚类

# coding:utf-8
import sklearn.datasets as datasets
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
# 1、创建数据
#无监督学习,算法不需要我们告诉它类别。它自动分出类别
x_tain,target=datasets.make_blobs(100,centers=10)
print(x_tain[:5,:])
# 2、建立模型对数据进行训练
kmeans = KMeans() #n_clusetrs 这个是设置你要分为多少类
#训练
kmeans.fit(x_tain,target) #这个是无监督学习没有预测训练值
y_t=kmeans.predict(x_tain)
centers = kmeans.cluster_centers_ #首先绘制初始的数据
plt.rcParams['font.sans-serif'] = ['SimHei'] # 设置字体为SimHei显示中文
plt.rcParams['axes.unicode_minus'] = False # 设置正常显示符号
plt.figure(figsize=(12,6))
plt.subplot(1,2,1)
plt.scatter(x_tain[:,0],x_tain[:,1],c=target) # c 是设置类别的属性
plt.title('原来数据')
plt.subplot(1,2,2)
plt.scatter(x_tain[:,0],x_tain[:,1],c=y_t)
plt.title('预测数据')
plt.figure()
plt.scatter(list(range(len(y_t))),y_t,c=y_t)
plt.show()

sklearn_k均值聚类的更多相关文章

  1. 【转】算法杂货铺——k均值聚类(K-means)

    k均值聚类(K-means) 4.1.摘要 在前面的文章中,介绍了三种常见的分类算法.分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应.但是很多时 ...

  2. 5-Spark高级数据分析-第五章 基于K均值聚类的网络流量异常检测

    据我们所知,有‘已知的已知’,有些事,我们知道我们知道:我们也知道,有 ‘已知的未知’,也就是说,有些事,我们现在知道我们不知道.但是,同样存在‘不知的不知’——有些事,我们不知道我们不知道. 上一章 ...

  3. 机器学习实战5:k-means聚类:二分k均值聚类+地理位置聚簇实例

    k-均值聚类是非监督学习的一种,输入必须指定聚簇中心个数k.k均值是基于相似度的聚类,为没有标签的一簇实例分为一类. 一 经典的k-均值聚类 思路: 1 随机创建k个质心(k必须指定,二维的很容易确定 ...

  4. Python实现kMeans(k均值聚类)

    Python实现kMeans(k均值聚类) 运行环境 Pyhton3 numpy(科学计算包) matplotlib(画图所需,不画图可不必) 计算过程 st=>start: 开始 e=> ...

  5. 多核模糊C均值聚类

    摘要: 针对于单一核在处理多数据源和异构数据源方面的不足,多核方法应运而生.本文是将多核方法应用于FCM算法,并对算法做以详细介绍,进而采用MATLAB实现. 在这之前,我们已成功将核方法应用于FCM ...

  6. 基于核方法的模糊C均值聚类

    摘要: 本文主要针对于FCM算法在很大程度上局限于处理球星星团数据的不足,引入了核方法对算法进行优化.  与许多聚类算法一样,FCM选择欧氏距离作为样本点与相应聚类中心之间的非相似性指标,致使算法趋向 ...

  7. 机器学习理论与实战(十)K均值聚类和二分K均值聚类

    接下来就要说下无监督机器学习方法,所谓无监督机器学习前面也说过,就是没有标签的情况,对样本数据进行聚类分析.关联性分析等.主要包括K均值聚类(K-means clustering)和关联分析,这两大类 ...

  8. 第十篇:K均值聚类(KMeans)

    前言 本文讲解如何使用R语言进行 KMeans 均值聚类分析,并以一个关于人口出生率死亡率的实例演示具体分析步骤. 聚类分析总体流程 1. 载入并了解数据集:2. 调用聚类函数进行聚类:3. 查看聚类 ...

  9. K均值聚类的失效性分析

    K均值聚类是一种应用广泛的聚类技术,特别是它不依赖于任何对数据所做的假设,比如说,给定一个数据集合及对应的类数目,就可以运用K均值方法,通过最小化均方误差,来进行聚类分析. 因此,K均值实际上是一个最 ...

随机推荐

  1. Android 开发工具下载中文网站

    Android官方网站(develop.android.com)因为被墙而无法访问.这时可以访问中文网址: http://wear.techbrood.com/ SDK Manager 代理及安装文件 ...

  2. DataTable学习笔记 - 01

    DataTable 是 jQuery 的一个插件. 代码上来吧, <!DOCTYPE html> <html> <head> <meta charset=&q ...

  3. BZOJ1064 NOI2008假面舞会(dfs树)

    将图中的环的长度定义为正向边数量-反向边数量,那么答案一定是所有环的环长的共同因子.dfs一下就能找到图中的一些环,并且图中的所有环的环长都可以由这些环长加加减减得到(好像不太会证).如果有环长为1或 ...

  4. 数据结构开发(14):KMP 子串查找算法

    0.目录 1.KMP 子串查找算法 2.KMP 算法的应用 3.小结 1.KMP 子串查找算法 问题: 如何在目标字符串S中,查找是否存在子串P? 朴素解法: 朴素解法的一个优化线索: 示例: 伟大的 ...

  5. JAVA里面的“指针”

    JAVA里面的“指针”                 众所周知,在java里面是没有指针的.那为何此处还要说java里面的“指针”呢?我们知道在C/C++中,指针是指向内存中的地址.那么在Java里 ...

  6. MT【128】不动点指路

    已知数列\(\{a_n\}\)满足\(2a_{n+1}=1-a_n^2\),且\(0<a_1<1\).求证:当\(n\geqslant 3\) 时,\(\left|\dfrac{1}{a_ ...

  7. 【刷题】BZOJ 3667 Rabin-Miller算法

    Input 第一行:CAS,代表数据组数(不大于350),以下CAS行,每行一个数字,保证在64位长整形范围内,并且没有负数.你需要对于每个数字:第一,检验是否是质数,是质数就输出Prime 第二,如 ...

  8. 【刷题】BZOJ 2594 [Wc2006]水管局长数据加强版

    Description SC省MY市有着庞大的地下水管网络,嘟嘟是MY市的水管局长(就是管水管的啦),嘟嘟作为水管局长的工作就是:每天供水公司可能要将一定量的水从x处送往y处,嘟嘟需要为供水公司找到一 ...

  9. 【bzoj4337】【Bjoi2015】树的同构

    题解 无标号树的HASH: 找到树的重心,以重心为根求出括号序列: 由于树的重心最多只有两个,取字典序的最小括号序列HASH即可 树的括号序列$s_{u}="(s_{v_{1}},s_{v_ ...

  10. Webpack + React 开发 03 props

    React中组件的用法与原生的 HTML 标签完全一致,可以任意加入属性,比如 <HelloWorld name="John"> ,就是 HelloWorld 组件加入 ...