P1446 [HNOI2008]Cards

题目描述

小春现在很清闲,面对书桌上的\(N\)张牌,他决定给每张染色,目前小春只有\(3\)种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.

进一步,小春要求染出\(S_r\)张红色,\(S_b\)张蓝色,\(S_g\)张绿色.他又询问有多少种方案,Sun想了一下,又给出了正确答案. 最后小春发明了\(M\)种不同的洗牌法,这里他又问Sun有多少种不同的染色方案.两种染色方法相同当且仅当其中一种可以通过任意的洗牌法(即可以使用多种洗牌法,而每种方法可以使用多次)洗成另一种.

Sun发现这个问题有点难度,决定交给你,答案可能很大,只要求出答案除以\(P\)的余数(\(P\)为质数).

输入输出格式

输入格式:

第一行输入 \(5\) 个整数:\(S_r,S_b,S_g,m,p(m\le 60,m+1<p<100)\)。\(n=S_r+S_b+S_g\)。接下来 \(m\) 行,每行描述一种洗牌法,每行有 \(n\) 个用空格隔开的整数 \(X_1X_2\dots X_n\),恰为 \(1\) 到 \(n\) 的一个排列,表示使用这种洗牌法,第 \(i\) 位变为原来的 \(X_i\) 位的牌。输入数据保证任意多次洗牌都可用这 \(m\) 种洗牌法中的一种代替,且对每种洗牌法,都存在一种洗牌法使得能回到原状态。

\(100\%\)数据满足 \(\max\{S_r,S_b,S_g\}\le 20\)。

输出格式:

不同染法除以\(P\)的余数


其实这个题的\(DP\)做法应该就是官方正解了,思维难度并不高。

很显然是变换构成了一个群

考虑\(polya\)定理

\[\frac{1}{|G|}\sum_{\pi \in G}m^{w(\pi)}
\]

然后因为每个循环节同色,我们可以直接求循环节然后\(dp\)

注意单位元不给,要自己加上

还有一种比较神奇的做法,发现这个题还给了除群外的一个性质,然后可以得到一个结论,仅单位元有不动点,然后\(Burnside\)直接组合算就可以了,答案就是

\[\frac{(a+b+c)!}{a!b!c!(m+1)}
\]

然后我并不会证,比较严谨的描述如下,如果谁可以给出证明,烦请私信我一下啦

设\(G=\{\pi_1,\pi_2,\dots,\pi_p\}\)是目标集\([1,n]\)上的置换群,且\(\forall t=\sum \pi_k,\pi_k \in G\),定义\(\sum\)为置换的连接操作,且\(k\)可重,\(\exists t \in G\),求证仅\(G\)的单位元存在不动点。


Code:

#include <cstdio>
const int N=201;
#define mul(a,b) (1ll*(a)*(b)%mod)
int a,b,c,m,mod,fac[N];
int qp(int d,int k){int f=1;while(k){if(k&1)f=mul(f,d);d=mul(d,d);k>>=1;}return f;}
int main()
{
scanf("%d%d%d%d%d",&a,&b,&c,&m,&mod);
for(int x,i=1;i<=m;i++)
for(int j=1;j<=a+b+c;j++)
scanf("%d",&x);
fac[0]=1;
for(int i=1;i<=N;i++) fac[i]=mul(fac[i-1],i);
int ans=mul(fac[a+b+c],mul(qp(fac[a],mod-2),mul(qp(fac[b],mod-2),mul(qp(fac[c],mod-2),qp(m+1,mod-2)))));
printf("%d\n",ans);
return 0;
}

2018.12.21

洛谷 P1446 [HNOI2008]Cards 解题报告的更多相关文章

  1. 洛谷 P3197 [HNOI2008]越狱 解题报告

    P3197 [HNOI2008]越狱 题目描述 监狱有连续编号为\(1-N\)的\(N\)个房间,每个房间关押一个犯人,有\(M\)种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可 ...

  2. 洛谷P1446 [HNOI2008]Cards

    置换群+dp #include<cstdio> #include<cstdlib> #include<algorithm> #include<cstring& ...

  3. 洛谷 P1783 海滩防御 解题报告

    P1783 海滩防御 题目描述 WLP同学最近迷上了一款网络联机对战游戏(终于知道为毛JOHNKRAM每天刷洛谷效率那么低了),但是他却为了这个游戏很苦恼,因为他在海边的造船厂和仓库总是被敌方派人偷袭 ...

  4. 洛谷 P4597 序列sequence 解题报告

    P4597 序列sequence 题目背景 原题\(\tt{cf13c}\)数据加强版 题目描述 给定一个序列,每次操作可以把某个数\(+1\)或\(-1\).要求把序列变成非降数列.而且要求修改后的 ...

  5. 洛谷1087 FBI树 解题报告

    洛谷1087 FBI树 本题地址:http://www.luogu.org/problem/show?pid=1087 题目描述 我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全 ...

  6. 洛谷 P3349 [ZJOI2016]小星星 解题报告

    P3349 [ZJOI2016]小星星 题目描述 小\(Y\)是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有\(n\)颗小星星,用\(m\)条彩色的细线串了起来,每条细线连着两颗小星星. 有一 ...

  7. 洛谷 P3177 树上染色 解题报告

    P3177 [HAOI2015]树上染色 题目描述 有一棵点数为\(N\)的树,树边有边权.给你一个在\(0\) ~ \(N\)之内的正整数\(K\),你要在这棵树中选择\(K\)个点,将其染成黑色, ...

  8. 洛谷 P4705 玩游戏 解题报告

    P4705 玩游戏 题意:给长为\(n\)的\(\{a_i\}\)和长为\(m\)的\(\{b_i\}\),设 \[ f(x)=\sum_{k\ge 0}\sum_{i=1}^n\sum_{j=1}^ ...

  9. 洛谷 P1272 重建道路 解题报告

    P1272 重建道路 题目描述 一场可怕的地震后,人们用\(N\)个牲口棚\((1≤N≤150\),编号\(1..N\))重建了农夫\(John\)的牧场.由于人们没有时间建设多余的道路,所以现在从一 ...

随机推荐

  1. oracle存储过程 关于update的动态SQL-工作心得

    本随笔文章,由个人博客(鸟不拉屎)转移至博客园 发布时间: 2018 年 12 月 20 日 原地址:https://niaobulashi.com/archives/oracle-procedure ...

  2. 监控与管理-SpringBoot

    在微服务架构中,我们将原本庞大的单体系统拆分成多个提供不同服务的应用. 虽然 各个应用的内部逻辑因分解而得以简化,但是由于部署应用的数量成倍增长,使得系统的 维护复杂度大大提升. 对于运维人员来说,随 ...

  3. 匹配追踪算法(MP)简介

    图像的稀疏表征 分割原始图像为若干个\[\sqrt{n} \times \sqrt{n}\]的块. 这些图像块就是样本集合中的单个样本\(y = \mathbb{R}^n\). 在固定的字典上稀疏分解 ...

  4. Bootstrap学习--基本格式

    以下为Bootstrap的基本格式代码 <!DOCTYPE html> <html lang="zh-CN"> <head> <meta ...

  5. 反爬虫和抗DDOS攻击技术实践

    导语 企鹅媒体平台媒体名片页反爬虫技术实践,分布式网页爬虫技术.利用人工智能进行人机识别.图像识别码.频率访问控制.利用无头浏览器PhantomJS.Selenium 进行网页抓取等相关技术不在本文讨 ...

  6. dubbo支持协议及具体对比

    对dubbo的协议的学习,可以知道目前主流RPC通信大概是什么情况,本文参考dubbo官方文档 http://dubbo.io/User+Guide-zh.htm dubbo共支持如下几种通信协议: ...

  7. OO第一阶段作业总结

    对于OO这门课,学长学姐偶尔提起,大家都略有耳闻,但是并没有将其和计组相提并论.因此,在刚开始接触的时候,并不认为其会比计组难到哪里去,然而事实证明,还是不要想当然去判断,以及不提前学好JAVA对于O ...

  8. vs2010调试-尝试调试dll源码。

    第一步: 打开“调试”——“选项和设置”——点击调试下“常规”——设置启用“启用.NET Framework源代码单步执行 ” 第二步 选择“符号”——选择Microsoft符号服务器——设置符号缓存 ...

  9. Delphi中比较两个对象是否一致及地址是否相同[转]

    在delphi中,C#也是如此,对象的地址与对象变量(引用)的地址不是同一个概念.要加以区别. procedure TForm1.btn1Click(Sender: TObject); var    ...

  10. vim出现自动补全的问题

    当使用vim编辑文件自动补全文件名称的时候,可能会出现_arguments:451: _vim_files: function definition file not found的错误,这个时候一般都 ...