题目

看题解的时候才突然发现\(zky\)讲过这道题啊,我现在怕不是一个老年人了

众所周知矩阵树求得是这个

\[\sum_{T}\prod_{e\in T}w_e
\]

而我们现在的这个问题有些鬼畜了,给定一棵树,求和这棵树有\(k\)条公共边的生成树个数

我们如何区分出和原生成树有几条边呢,容斥显然不是很可做,于是之后就不会啦

看了题解发现这是神仙题,引用潮子名言我可能这辈子是做不出来了

对于不在给定生成树里的边\(w_e\)我们设\(w_e=1\),对于在生成树里的边我们将其设成\(w_e=x\),没错就是\(x\),就是一个多项式

这样矩阵树得到的结果必然也是一个多项式,其中\(k\)次项系数就对应了和原树有\(k\)条公共边的方案数

如果模数是\(NTT\)模数那么我们直接矩阵树套多项式就好啦,但是\(O(n^4logn)\)的复杂度显然不科学啊

考虑一些其他求多项式系数的方法,暴力一点也行

于是我们可以高斯消元

这个多项式是一个\(n-1\)的多项式,于是我们可以直接给\(x\)找\(n\)种取值,之后得到\(n\)个方程,之后高斯消元就可以求出系数来了

代码

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define re register
#define LL long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
const int maxn=105;
const int mod=1e9+7;
inline int read() {
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
int n,x[maxn],y[maxn],ans[maxn];
int a[maxn][maxn],b[maxn][maxn];
inline int ksm(int a,int b) {
int S=1;
while(b) {if(b&1) S=(1ll*S*a)%mod;b>>=1;a=(1ll*a*a)%mod;}
return S;
}
inline void reBuild() {
for(re int i=1;i<=n;i++) a[i][i]=n-1;
for(re int i=1;i<=n;i++)
for(re int j=1;j<=n;j++) {
if(i==j) continue;
a[i][j]=mod-1;
}
}
inline int solve(int t) {
reBuild();
for(re int i=1;i<n;i++) {
int u=x[i],v=y[i];
a[u][u]--,a[v][v]--;
a[u][u]+=t,a[v][v]+=t;
a[u][v]=a[v][u]=mod-t;
}
int o=0;
for(re int i=1;i<n;i++) {
int p;
for(p=i;p<n;++p) if(a[p][i]) break;
if(p!=i) std::swap(a[p],a[i]),o^=1;
int Inv=ksm(a[i][i],mod-2);
for(re int j=i+1;j<n;j++) {
int mul=(1ll*a[j][i]*Inv)%mod;
for(re int k=i;k<n;k++)
a[j][k]=(a[j][k]-1ll*a[i][k]*mul%mod+mod)%mod;
}
}
int now=1;
for(re int i=1;i<n;i++) now=(1ll*now*a[i][i])%mod;
return o?(mod-now)%mod:now;
}
int main() {
n=read();
for(re int i=1;i<n;i++) x[i]=read(),y[i]=read();
for(re int i=0;i<n;i++) {
b[i][n]=solve(i+1);
b[i][0]=1;
for(re int j=1;j<n;j++) b[i][j]=ksm(i+1,j);
}
for(re int i=0;i<n;i++) {
int p;
for(p=i;p<n;++p) if(b[p][i]) break;
if(p!=i) std::swap(b[p],b[i]);
int Inv=ksm(b[i][i],mod-2);
for(re int j=n;j>=i;--j) b[i][j]=(1ll*b[i][j]*Inv)%mod;
for(re int j=i+1;j<n;j++)
for(re int k=n;k>=i;--k)
b[j][k]=(b[j][k]-1ll*b[j][i]*b[i][k]%mod+mod)%mod;
}
ans[n-1]=b[n-1][n];
for(re int i=n-2;i>=0;--i) {
ans[i]=b[i][n];
for(re int j=n-1;j>i;--j)
ans[i]=(ans[i]-1ll*ans[j]*b[i][j]%mod+mod)%mod;
}
for(re int i=0;i<n;i++) printf("%d ",ans[i]);
return 0;
}

【CF917D】Stranger Trees的更多相关文章

  1. 【CF917D】Stranger Trees 树形DP+Prufer序列

    [CF917D]Stranger Trees 题意:给你一棵n个点的树,对于k=1...n,问你有多少有标号的n个点的树,与给出的树有恰好k条边相同? $n\le 100$ 题解:我们先考虑容斥,求出 ...

  2. 【AGC018F】Two Trees 构造 黑白染色

    题目描述 有两棵有根树,顶点的编号都是\(1\)~\(n\). 你要给每个点一个权值\(a_i\),使得对于两棵树的所有顶点\(x\),满足\(|x\)的子树的权值和\(|=1\) \(n\leq 1 ...

  3. 【CF711C】Coloring Trees(DP)

    题意:给你n个数字,一共有m种,如果某数为0则该数为空,空的地方可以填任意种类数,但每填一个数字都要花费一定的费用, 从头到尾,所有相邻且相同的数字看作一个集合,求使n个数字的集合数为k所需的最小费用 ...

  4. 【LeetCode】树(共94题)

    [94]Binary Tree Inorder Traversal [95]Unique Binary Search Trees II (2018年11月14日,算法群) 给了一个 n,返回结点是 1 ...

  5. 【LeetCode】深搜DFS(共85题)

    [98]Validate Binary Search Tree [99]Recover Binary Search Tree [100]Same Tree [101]Symmetric Tree [1 ...

  6. 【HDU4010】【LCT】Query on The Trees

    Problem Description We have met so many problems on the tree, so today we will have a query problem ...

  7. 【计算几何初步-凸包-Jarvis步进法。】【HDU1392】Surround the Trees

    [科普]什么是BestCoder?如何参加? Surround the Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65 ...

  8. CF917D Stranger Trees

    CF917D Stranger Trees 题目描述 给定一个树,对于每个\(k=0,1\cdots n-1\),问有多少个生成树与给定树有\(k\)条边重合. 矩阵树定理+高斯消元 我们答案为\(f ...

  9. 【HDU1693】Eat the Trees(插头dp)

    [HDU1693]Eat the Trees(插头dp) 题面 HDU Vjudge 大概就是网格图上有些点不能走,现在要找到若干条不相交的哈密顿回路使得所有格子都恰好被走过一遍. 题解 这题的弱化版 ...

随机推荐

  1. VS2015编译OpenSSL

    概述 OpenSSL 是一个开源的第三方库,它实现了 SSL(Secure SocketLayer)和 TLS(Transport Layer Security)协议,被广泛企业应用所采用.对于一般的 ...

  2. hdu 4090

    GemAnd Prince Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  3. Differences between page and segment

    https://techdifferences.com/difference-between-paging-and-segmentation-in-os.html how does paging so ...

  4. vue实现上传上删除压缩图片

    <script> import {Config} from '@/config.js' import {mapState} from 'vuex' import {LocalData, t ...

  5. css盒模型(Box Model)

    所有HTML元素可以看作盒子,在CSS中,"box model"这一术语是用来设计和布局时使用. CSS盒模型本质上是一个盒子,封装周围的HTML元素,它包括:边距,边框,填充,和 ...

  6. Storm概念

    概念 本文列出了Storm的主要概念及相关的信息链接.讨论到的概念有: Topologies Streams Spouts Bolts Stream groupings Reliability Tas ...

  7. windows 命令行报错:file(s) not in client view

    今天在执行p4 sync命令时报错:File(s) not in client view,查找后发现其实是未连接上p4服务器.需要重新设置P4PORT=服务器地址  即可解决(参考链接:https:/ ...

  8. Oracle EBS AR 收款API收款方法标识无效

    1.确认是不是没有收款方法 methods那个表的问题2.查看收款方法那个LOV的问题3.界面录入 是否会有问题  碰到的问题是 收款日期比较早时 找不到对应的收款方法 银行账户需要重新设置

  9. Jmeter入门--可执行元件

    一.测试片段(Test Fragment) 测试片段元素是控制器上的一种特殊的线程组,它在测试树上与线程组处于一级层级.它与线程组有所不同,因为它不执行,除非它是一个模块控制器或者是被控制器所引用时才 ...

  10. MySQL字符存储:charset-unicode-sets

    https://dev.mysql.com/doc/refman/8.0/en/charset-unicode-sets.html 10.10.1 Unicode Character Sets MyS ...