【CF917D】Stranger Trees
看题解的时候才突然发现\(zky\)讲过这道题啊,我现在怕不是一个老年人了
众所周知矩阵树求得是这个
\]
而我们现在的这个问题有些鬼畜了,给定一棵树,求和这棵树有\(k\)条公共边的生成树个数
我们如何区分出和原生成树有几条边呢,容斥显然不是很可做,于是之后就不会啦
看了题解发现这是神仙题,引用潮子名言我可能这辈子是做不出来了
对于不在给定生成树里的边\(w_e\)我们设\(w_e=1\),对于在生成树里的边我们将其设成\(w_e=x\),没错就是\(x\),就是一个多项式
这样矩阵树得到的结果必然也是一个多项式,其中\(k\)次项系数就对应了和原树有\(k\)条公共边的方案数
如果模数是\(NTT\)模数那么我们直接矩阵树套多项式就好啦,但是\(O(n^4logn)\)的复杂度显然不科学啊
考虑一些其他求多项式系数的方法,暴力一点也行
于是我们可以高斯消元
这个多项式是一个\(n-1\)的多项式,于是我们可以直接给\(x\)找\(n\)种取值,之后得到\(n\)个方程,之后高斯消元就可以求出系数来了
代码
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define re register
#define LL long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
const int maxn=105;
const int mod=1e9+7;
inline int read() {
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
int n,x[maxn],y[maxn],ans[maxn];
int a[maxn][maxn],b[maxn][maxn];
inline int ksm(int a,int b) {
int S=1;
while(b) {if(b&1) S=(1ll*S*a)%mod;b>>=1;a=(1ll*a*a)%mod;}
return S;
}
inline void reBuild() {
for(re int i=1;i<=n;i++) a[i][i]=n-1;
for(re int i=1;i<=n;i++)
for(re int j=1;j<=n;j++) {
if(i==j) continue;
a[i][j]=mod-1;
}
}
inline int solve(int t) {
reBuild();
for(re int i=1;i<n;i++) {
int u=x[i],v=y[i];
a[u][u]--,a[v][v]--;
a[u][u]+=t,a[v][v]+=t;
a[u][v]=a[v][u]=mod-t;
}
int o=0;
for(re int i=1;i<n;i++) {
int p;
for(p=i;p<n;++p) if(a[p][i]) break;
if(p!=i) std::swap(a[p],a[i]),o^=1;
int Inv=ksm(a[i][i],mod-2);
for(re int j=i+1;j<n;j++) {
int mul=(1ll*a[j][i]*Inv)%mod;
for(re int k=i;k<n;k++)
a[j][k]=(a[j][k]-1ll*a[i][k]*mul%mod+mod)%mod;
}
}
int now=1;
for(re int i=1;i<n;i++) now=(1ll*now*a[i][i])%mod;
return o?(mod-now)%mod:now;
}
int main() {
n=read();
for(re int i=1;i<n;i++) x[i]=read(),y[i]=read();
for(re int i=0;i<n;i++) {
b[i][n]=solve(i+1);
b[i][0]=1;
for(re int j=1;j<n;j++) b[i][j]=ksm(i+1,j);
}
for(re int i=0;i<n;i++) {
int p;
for(p=i;p<n;++p) if(b[p][i]) break;
if(p!=i) std::swap(b[p],b[i]);
int Inv=ksm(b[i][i],mod-2);
for(re int j=n;j>=i;--j) b[i][j]=(1ll*b[i][j]*Inv)%mod;
for(re int j=i+1;j<n;j++)
for(re int k=n;k>=i;--k)
b[j][k]=(b[j][k]-1ll*b[j][i]*b[i][k]%mod+mod)%mod;
}
ans[n-1]=b[n-1][n];
for(re int i=n-2;i>=0;--i) {
ans[i]=b[i][n];
for(re int j=n-1;j>i;--j)
ans[i]=(ans[i]-1ll*ans[j]*b[i][j]%mod+mod)%mod;
}
for(re int i=0;i<n;i++) printf("%d ",ans[i]);
return 0;
}
【CF917D】Stranger Trees的更多相关文章
- 【CF917D】Stranger Trees 树形DP+Prufer序列
[CF917D]Stranger Trees 题意:给你一棵n个点的树,对于k=1...n,问你有多少有标号的n个点的树,与给出的树有恰好k条边相同? $n\le 100$ 题解:我们先考虑容斥,求出 ...
- 【AGC018F】Two Trees 构造 黑白染色
题目描述 有两棵有根树,顶点的编号都是\(1\)~\(n\). 你要给每个点一个权值\(a_i\),使得对于两棵树的所有顶点\(x\),满足\(|x\)的子树的权值和\(|=1\) \(n\leq 1 ...
- 【CF711C】Coloring Trees(DP)
题意:给你n个数字,一共有m种,如果某数为0则该数为空,空的地方可以填任意种类数,但每填一个数字都要花费一定的费用, 从头到尾,所有相邻且相同的数字看作一个集合,求使n个数字的集合数为k所需的最小费用 ...
- 【LeetCode】树(共94题)
[94]Binary Tree Inorder Traversal [95]Unique Binary Search Trees II (2018年11月14日,算法群) 给了一个 n,返回结点是 1 ...
- 【LeetCode】深搜DFS(共85题)
[98]Validate Binary Search Tree [99]Recover Binary Search Tree [100]Same Tree [101]Symmetric Tree [1 ...
- 【HDU4010】【LCT】Query on The Trees
Problem Description We have met so many problems on the tree, so today we will have a query problem ...
- 【计算几何初步-凸包-Jarvis步进法。】【HDU1392】Surround the Trees
[科普]什么是BestCoder?如何参加? Surround the Trees Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65 ...
- CF917D Stranger Trees
CF917D Stranger Trees 题目描述 给定一个树,对于每个\(k=0,1\cdots n-1\),问有多少个生成树与给定树有\(k\)条边重合. 矩阵树定理+高斯消元 我们答案为\(f ...
- 【HDU1693】Eat the Trees(插头dp)
[HDU1693]Eat the Trees(插头dp) 题面 HDU Vjudge 大概就是网格图上有些点不能走,现在要找到若干条不相交的哈密顿回路使得所有格子都恰好被走过一遍. 题解 这题的弱化版 ...
随机推荐
- SDWebImage实现图片展示、缓存、清除缓存
1. /* 图片显示 */ [self.imageView sd_setImageWithURL:[NSURL URLWithString:urlString]]; [s ...
- java并发编程的艺术(四)---ConcurrentHashMap原理解析
本文来源于翁舒航的博客,点击即可跳转原文观看!!!(被转载或者拷贝走的内容可能缺失图片.视频等原文的内容) 若网站将链接屏蔽,可直接拷贝原文链接到地址栏跳转观看,原文链接:https://www.cn ...
- SQL0286N 找不到页大小至少为 "8192"、许可使用授权标识 "db2inst" 的缺省表空间。
在 SQL 处理期间,它返回: SQL0286N 找不到页大小至少为 "8192".许可使用授权标识 "db2inst" 的缺省表空间. 顾名思义,DB2默认 ...
- LOJ#6271. 「长乐集训 2017 Day10」生成树求和 加强版
传送门 由于是边权三进制不进位的相加,那么可以考虑每一位的贡献 对于每一位,生成树的边权相当于是做模 \(3\) 意义下的加法 考虑最后每一种边权的生成树个数,这个可以直接用生成函数,在矩阵树求解的时 ...
- sql_date
往Oracle数据库中插入日期型数据(to_date的用法) INSERT INTO FLOOR VALUES ( to_date ( '2007-12-20 18:31:34' , 'YYY ...
- js实现放大镜的效果
<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...
- CSS代码缩写
盒模型代码简写 还记得在讲盒模型时外边距(margin).内边距(padding)和边框(border)设置上下左右四个方向的边距是按照顺时针方向设置的:上右下左.具体应用在margin和paddin ...
- 浏览器根对象document之字符串属性
1.1 停止使用的属性 fgColor.linkColor.vlinkColor.alinkColor.bgColor. 1.2 文档地址 document.URL 与documentURI属性返回同 ...
- js中innerHTML和innerText的用法
<div id="test"> <span style="color:red">test1</span> test2 < ...
- CSS3 选择器用法小结
表单选择器: /*:enabled 可用的 :disabled 被禁用的 :focus 获取了焦点的 多用在表单元素上*/ input:enabled {...} input:disabled {.. ...