【OpenCV3】threshold()函数详解
threshold()函数源码
double cv::threshold( InputArray _src, OutputArray _dst, double thresh, double maxval, int type )
{
// enum
//{
// CV_THRESH_BINARY =0, /**< value = value > threshold ? max_value : 0 */
// CV_THRESH_BINARY_INV =1, /**< value = value > threshold ? 0 : max_value */
// CV_THRESH_TRUNC =2, /**< value = value > threshold ? threshold : value */
// CV_THRESH_TOZERO =3, /**< value = value > threshold ? value : 0 */
// CV_THRESH_TOZERO_INV =4, /**< value = value > threshold ? 0 : value */
// CV_THRESH_MASK =7,
// CV_THRESH_OTSU =8, /**< use Otsu algorithm to choose the optimal threshold value;
// combine the flag with one of the above CV_THRESH_* values */
// CV_THRESH_TRIANGLE =16 /**< use Triangle algorithm to choose the optimal threshold value;
// combine the flag with one of the above CV_THRESH_* values, but not
// with CV_THRESH_OTSU */
//};
CV_INSTRUMENT_REGION();
CV_OCL_RUN_(_src.dims() <= && _dst.isUMat(),
ocl_threshold(_src, _dst, thresh, maxval, type), thresh)
Mat src = _src.getMat();
int automatic_thresh = (type & ~CV_THRESH_MASK);// 排除前五种可能,判断是否是CV_THRESH_OTSU \ CV_THRESH_TRIANGLE(8,16)
type &= THRESH_MASK; // THRESH_MASK(7) 得到当前二值化的类型(前五种),0,1,2,3,4
CV_Assert( automatic_thresh != (CV_THRESH_OTSU | CV_THRESH_TRIANGLE) );
if( automatic_thresh == CV_THRESH_OTSU )// 判断是否是CV_THRESH_OTSU(8)
{
// 使用算法选择最佳阈值;将标志与上述cv_thresh_*值之一相结合 计算最佳阈值
CV_Assert( src.type() == CV_8UC1 );
thresh = getThreshVal_Otsu_8u( src );
}
else if( automatic_thresh == CV_THRESH_TRIANGLE )// 判断是否是CV_THRESH_TRIANGLE(16)
{
// 使用三角算法选择最优阈值;将标志与上述cv_thresh_*值之一组合,但不使用cv_thresh_otsu 计算最佳阈值
CV_Assert( src.type() == CV_8UC1 );
thresh = getThreshVal_Triangle_8u( src );
}
_dst.create( src.size(), src.type() );// 创建目标图像
Mat dst = _dst.getMat();
if( src.depth() == CV_8U )// 如果原始图像的深度为8位无符号
{
int ithresh = cvFloor(thresh);// 将thresh向下取整
thresh = ithresh;
int imaxval = cvRound(maxval); // 将maxval向最接近的整数取整
if( type == THRESH_TRUNC )
imaxval = ithresh;
imaxval = saturate_cast<uchar>(imaxval);
if( ithresh < || ithresh >= )
{
if( type == THRESH_BINARY || type == THRESH_BINARY_INV ||
((type == THRESH_TRUNC || type == THRESH_TOZERO_INV) && ithresh < ) ||
(type == THRESH_TOZERO && ithresh >= ) )
{
int v = type == THRESH_BINARY ? (ithresh >= ? : imaxval) :
type == THRESH_BINARY_INV ? (ithresh >= ? imaxval : ) :
/*type == THRESH_TRUNC ? imaxval :*/ ;
dst.setTo(v);
}
else
src.copyTo(dst);
return thresh;
}
CV_OVX_RUN(!ovx::skipSmallImages<VX_KERNEL_THRESHOLD>(src.cols, src.rows),
openvx_threshold(src, dst, ithresh, imaxval, type), (double)ithresh)
thresh = ithresh;
maxval = imaxval;
}
else if( src.depth() == CV_16S )// 如果原始图像的深度为16位short类型
{
int ithresh = cvFloor(thresh);
thresh = ithresh;
int imaxval = cvRound(maxval);
if( type == THRESH_TRUNC )
imaxval = ithresh;
imaxval = saturate_cast<short>(imaxval);
if( ithresh < SHRT_MIN || ithresh >= SHRT_MAX )
{
if( type == THRESH_BINARY || type == THRESH_BINARY_INV ||
((type == THRESH_TRUNC || type == THRESH_TOZERO_INV) && ithresh < SHRT_MIN) ||
(type == THRESH_TOZERO && ithresh >= SHRT_MAX) )
{
int v = type == THRESH_BINARY ? (ithresh >= SHRT_MAX ? : imaxval) :
type == THRESH_BINARY_INV ? (ithresh >= SHRT_MAX ? imaxval : ) :
/*type == THRESH_TRUNC ? imaxval :*/ ;
dst.setTo(v);
}
else
src.copyTo(dst);
return thresh;
}
thresh = ithresh;
maxval = imaxval;
}
else if (src.depth() == CV_16U )// 如果原始图像的深度为16位无符号
{
int ithresh = cvFloor(thresh);
thresh = ithresh;
int imaxval = cvRound(maxval);
if (type == THRESH_TRUNC)
imaxval = ithresh;
imaxval = saturate_cast<ushort>(imaxval);
int ushrt_min = ;
if (ithresh < ushrt_min || ithresh >= (int)USHRT_MAX)
{
if (type == THRESH_BINARY || type == THRESH_BINARY_INV ||
((type == THRESH_TRUNC || type == THRESH_TOZERO_INV) && ithresh < ushrt_min) ||
(type == THRESH_TOZERO && ithresh >= (int)USHRT_MAX))
{
int v = type == THRESH_BINARY ? (ithresh >= (int)USHRT_MAX ? : imaxval) :
type == THRESH_BINARY_INV ? (ithresh >= (int)USHRT_MAX ? imaxval : ) :
/*type == THRESH_TRUNC ? imaxval :*/ ;
dst.setTo(v);
}
else
src.copyTo(dst);
return thresh;
}
thresh = ithresh;
maxval = imaxval;
}
else if( src.depth() == CV_32F )// 如果原始图像的深度为32位浮点型
;
else if( src.depth() == CV_64F )// 如果原始图像的深度为64位浮点型
;
else
CV_Error( CV_StsUnsupportedFormat, "" ); // 不能识别的图像格式
parallel_for_(Range(, dst.rows),
ThresholdRunner(src, dst, thresh, maxval, type),
dst.total()/(double)(<<));
return thresh;
}
threshold()函数二值化的方法(types)/** Threshold types */
enum
{
CV_THRESH_BINARY =, /**< value = value > threshold ? max_value : 0 正向二值化*/
CV_THRESH_BINARY_INV =, /**< value = value > threshold ? 0 : max_value 反向二值化*/
CV_THRESH_TRUNC =, /**< value = value > threshold ? threshold : value */
CV_THRESH_TOZERO =, /**< value = value > threshold ? value : 0 */
CV_THRESH_TOZERO_INV =, /**< value = value > threshold ? 0 : value */
CV_THRESH_MASK =, // 掩码
CV_THRESH_OTSU =, /**< use Otsu algorithm to choose the optimal threshold value;
combine the flag with one of the above CV_THRESH_* values
使用算法选择最佳阈值;将标志与上述cv_thresh_*值之一相结合*/
CV_THRESH_TRIANGLE = /**< use Triangle algorithm to choose the optimal threshold value;
combine the flag with one of the above CV_THRESH_* values, but not
with CV_THRESH_OTSU
使用三角算法选择最优阈值;将标志与上述cv_thresh_*值之一组合,但不使用cv_thresh_otsu*/
};
【OpenCV3】threshold()函数详解的更多相关文章
- opencv-python图像二值化函数cv2.threshold函数详解及参数cv2.THRESH_OTSU使用
cv2.threshold()函数的作用是将一幅灰度图二值化,基本用法如下: #ret:暂时就认为是设定的thresh阈值,mask:二值化的图像 ret,mask = cv2.threshold(i ...
- php缓存技术——memcache常用函数详解
php缓存技术——memcache常用函数详解 2016-04-07 aileen PHP编程 Memcache函数库是在PECL(PHP Extension Community Library)中, ...
- malloc 与 free函数详解<转载>
malloc和free函数详解 本文介绍malloc和free函数的内容. 在C中,对内存的管理是相当重要.下面开始介绍这两个函数: 一.malloc()和free()的基本概念以及基本用法: 1 ...
- NSSearchPathForDirectoriesInDomains函数详解
NSSearchPathForDirectoriesInDomains函数详解 #import "NSString+FilePath.h" @implementation ...
- JavaScript正则表达式详解(二)JavaScript中正则表达式函数详解
二.JavaScript中正则表达式函数详解(exec, test, match, replace, search, split) 1.使用正则表达式的方法去匹配查找字符串 1.1. exec方法详解 ...
- Linux C popen()函数详解
表头文件 #include<stdio.h> 定义函数 FILE * popen( const char * command,const char * type); 函数说明 popen( ...
- kzalloc 函数详解(转载)
用kzalloc申请内存的时候, 效果等同于先是用 kmalloc() 申请空间 , 然后用 memset() 来初始化 ,所有申请的元素都被初始化为 0. view plain /** * kzal ...
- Netsuite Formula > Oracle函数列表速查(PL/SQL单行函数和组函数详解).txt
PL/SQL单行函数和组函数详解 函数是一种有零个或多个参数并且有一个返回值的程序.在SQL中Oracle内建了一系列函数,这些函数都可被称为SQL或PL/SQL语句,函数主要分为两大类: 单行函数 ...
- jQuery.attr() 函数详解
一,jQuery.attr() 函数详解: http://www.365mini.com/page/jquery-attr.htm 二,jQuery函数attr()和prop()的区别: http: ...
随机推荐
- 2018.10.19 NOIP训练 游戏问题(分组背包)
传送门 分组背包经典问题. 令f[i][j]f[i][j]f[i][j]表示前iii组花费为jjj的最优值. g[i][j]g[i][j]g[i][j]表示前iii组,第iii组已经支付了平台费用的最 ...
- [GO]删除切片的某个值
func removePro(ddbenv []*model.EnvInfo, k int) []*model.EnvInfo { :]...) } for k, v := range ddbenv ...
- C++之类和对象的使用(二)
析构函数 析构函数的作用并不是删除对象,而是在撤销对象占用的内存之前完成一系列清理工作,使这部分内存可以被程序分配给新对象使用.对象生命周期结束,程序就自动执行析构函数来完成这些工作. 析构函数是一种 ...
- jar 包和 mysql 服务器部署
(1)创建好本地服务器: navicat新建链接: 链接名:自定义,这里命名为test 配置同jar包 (2)给予登陆权限,loclhost_3306,右击选择“命令行界面”,输入如下: create ...
- Java 窗体居中 通用代码
Toolkit kit = Toolkit.getDefaultToolkit(); // 定义工具包 Dimension screenSize = kit.getScreenSize() ...
- NSUserDefaults 简介,使用 NSUserDefaults 存储自定义对象 - lady-奕奕的个人空间 - 开源中国社区
一.了解NSUserDefaults以及它可以直接存储的类型 NSUserDefaults是一个,在整个程序中只有一个实例对象,他可以用于数据的永久保存,而且简单实用,这是它可以让数据自由传递的一个前 ...
- hdu1171 Big Event in HDU(01背包) 2016-05-28 16:32 75人阅读 评论(0) 收藏
Big Event in HDU Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- Back to December -- Taylor Swift
Back to December 泰勒·斯威夫特(Taylor Swift),美国乡村音乐女创作歌手,会用木吉他.钢琴演奏. 曾获得美国乡村音 ...
- .NET 调试入门(一) 调试工具的使用
至于WinDbg的下载和基本配置网上到处都是,可以参考 http://www.cnblogs.com/happyhippy/archive/2007/04/08/710933.html 因为现在W ...
- gdb用法
mickole@test:~/ctest/05gdb$ gdb simple //开始gdb调试 GNU gdb (Ubuntu/Linaro 7.4-2012.04-0ubuntu2.1) 7.4- ...