HDU 1950(LIS)
题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=1950
Bridging signals
Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 3711 Accepted Submission(s): 2337
expensive to redo the routing. Instead, the engineers have to bridge the signals, using the third dimension, so that no two signals cross. However, bridging is a complicated operation, and thus it is desirable to bridge as few signals as possible. The call for a computer program that finds the maximum number of signals which may be connected on the silicon surface without rossing each other, is imminent. Bearing in mind that there may be housands of signal ports at the boundary of a functional block, the problem asks quite a lot of the programmer. Are you up to the task?

Figure 1. To the left: The two blocks' ports and their signal mapping (4,2,6,3,1,5). To the right: At most three signals may be routed on the silicon surface without crossing each other. The dashed signals must be bridged.
A typical situation is schematically depicted in figure 1. The ports of the two functional blocks are numbered from 1 to p, from top to bottom. The signal mapping is described by a permutation of the numbers 1 to p in the form of a list of p unique numbers in the range 1 to p, in which the i:th number pecifies which port on the right side should be connected to the i:th port on the left side.
Two signals cross if and only if the straight lines connecting the two ports of each pair do.
#include<bits/stdc++.h>
#define max_v 100005
using namespace std;
int a[max_v],dp[max_v],len;
int select(int x)
{
int l,r,m;
l=;
r=len;
while(l<r)
{
m=l+(r-l)/;
if(dp[m]>=x)
{
r=m;
}else
{
l=m+;
}
}
return l;
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int n;
scanf("%d",&n);
for(int i=; i<=n; i++)
{
scanf("%d",&a[i]);
}
//dp[k]代表长度为k的LIS序列的最末元素,若有多个长度为k的上升子序列,则记录最小的那个最末元素
//dp[]中的元素是单调递增的,二分优化的时候利用这个性质 dp[]=a[];
len=;
for(int i=; i<=n; i++)
{
if(a[i]>dp[len])
{
dp[++len]=a[i];
}
else
{
int j=select(a[i]);
dp[j]=a[i];
}
}
printf("%d\n",len);
}
return ;
}
HDU 1950(LIS)的更多相关文章
- HDU 1950 LIS(nlogn)
Bridging signals Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
- hdu 1950 最长上升子序列(lis) nlogn算法【dp】
这个博客说的已经很好了.http://blog.csdn.net/shuangde800/article/details/7474903 简单记录一下自己学的: 问题就是求一个数列最长上升子序列的长度 ...
- hdu 1025 lis 注意细节!!!【dp】
感觉这道题浪费了我半个小时的生命......哇靠!原来输出里面当len=1时是road否则是roads!!! 其实做过hdu 1950就会发现这俩其实一样,就是求最长上升子序列.我用结构体记录要连线的 ...
- HDU 1950 Bridging signals (DP)
职务地址:HDU 1950 这题是求最长上升序列,可是普通的最长上升序列求法时间复杂度是O(n*n).显然会超时.于是便学了一种O(n*logn)的方法.也非常好理解. 感觉还用到了一点贪心的思想. ...
- HDU 1950 Bridging signals(LIS)
最长上升子序列(LIS)的典型变形,O(n^2)的动归会超时.LIS问题可以优化为nlogn的算法. 定义d[k]:长度为k的上升子序列的最末元素,若有多个长度为k的上升子序列,则记录最小的那个最末元 ...
- HDU 1950 Bridging signals (LIS,O(nlogn))
题意: 给一个数字序列,要求找到LIS,输出其长度. 思路: 扫一遍+二分,复杂度O(nlogn),空间复杂度O(n). 具体方法:增加一个数组,用d[i]表示长度为 i 的递增子序列的最后一个元素, ...
- Bridging signals hdu 1950 (最长上升子序列)
http://acm.split.hdu.edu.cn/showproblem.php?pid=1950 题意:求最长上升(不连续or连续)子序列 推荐博客链接: http://blog.csdn.n ...
- Super Jumping! Jumping! Jumping!(hdu 1087 LIS变形)
Super Jumping! Jumping! Jumping! Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 ...
- HDU 1025 LIS二分优化
题目链接: acm.hdu.edu.cn/showproblem.php?pid=1025 Constructing Roads In JGShining's Kingdom Time Limit: ...
随机推荐
- Django基础五之django模型层(二)多表操作
一 创建模型 表和表之间的关系 一对一.多对一.多对多 ,用book表和publish表自己来想想关系,想想里面的操作,加外键约束和不加外键约束的区别,一对一的外键约束是在一对多的约束上加上唯一约束. ...
- vscode 代码跳转之PHP篇
1.安装插件:PHP IntelliSense 2.配置:"php.executablePath": "C:\\php\\php.exe", 但是目前有问题,跨 ...
- RabbitMQ,Windows环境下安装搭建
切入正题:RabbitMQ的Windows环境下安装搭建 一.首先安装otp_win64_20.1.exe,,, 二.然后安装,rabbitmq-server-3.6.12.exe, 安装完成后,在服 ...
- sql中 设置区分大小写
CI 指定不区分大小写,CS 指定区分大小写alter table 表名 alter column 字段 nvarchar(100) collate chinese_prc_cs_as --区分大小写 ...
- Pig类型转换
users.data的内容如下: lisg 28 75 dengsl 24 88 强制类型转换 users = load '/users.data' fehed = foreach users gen ...
- git常用命令简集
基础操作: 初始化git仓库: git init 提交到暂存区: git add “filename” 提交到分支: git commit -m "注释" 工作区状态: git s ...
- 命令模式-实现undo和redo
这次实验主要是实现多次redo和undo,即程序的撤回和恢复,这里只实现加法的撤回和恢复. 程序的撤回和恢复就是由所使用的软件来记录操作步骤,可以将数据恢复到某个操作状态. 撤回这个指令很常见,Win ...
- [C#] Microsoft .Net框架SerialPort类的用法与示例
从Microsoft .Net 2.0版本以后,就默认提供了System.IO.Ports.SerialPort类,用户可以非常简单地编写少量代码就完成串口的信息收发程序.本文将介绍如何在PC端用C# ...
- Oracle EBS 请求添加SQL语句
- Jmeter入门--参数化、集合点
一.参数化 1.用户定义的变量 用户自定义变量中的定义的所有参数的值在测试计划的执行过程中不能发生取值的改变,因此一般仅将测试计划中不需要随迭代发生改变的参数(只取一次值的参数)设置在此处.例如应用的 ...