混沌数学之Lorenz(洛伦茨)吸引子
洛伦茨吸引子是洛伦茨振子(Lorenz oscillator)的长期行为对应的分形结构,以爱德华·诺顿·洛伦茨的姓氏命名。
洛伦茨振子是能产生混沌流的三维动力系统,是一种吸引子,以其双纽线形状而著称。
映射展示出动力系统(三维系统的三个变量)的状态是如何以一种复杂且不重复的模式,随时间的推移而演变的。
当ρ(m_ParamB)值较小时,系统是稳定的,并能演变为两个定点吸引子中的一个;
当ρ(m_ParamB)大于24.28时,定点变成了排斥子,会以非常复杂的方式排斥轨迹,演变时自身从不交叉。
相关软件:混沌数学及其软件模拟
相关代码:
/*
http://zh.wikipedia.org/wiki/%E6%B4%9B%E4%BC%A6%E8%8C%A8%E5%90%B8%E5%BC%95%E5%AD%90
*/ class LorenzOscillator : public DifferentialEquation
{
public:
LorenzOscillator()
{
m_StartX = -10.0f;
m_StartY = 10.0f;
m_StartZ = 25.0f; m_ParamA = 10.0f;
m_ParamB = 28.0f;
m_ParamC = 8.0f/3.0f; m_StepT = 0.001f;
} void Derivative(float x, float y, float z, float& dX, float& dY, float& dZ)
{
dX = m_ParamA*(y - x);
dY = m_ParamB*x - y - x*z;
dZ = x*y - m_ParamC*z;
} bool IsValidParamA() const {return true;}
bool IsValidParamB() const {return true;}
bool IsValidParamC() const {return true;}
};
相关截图:
混沌数学之Lorenz(洛伦茨)吸引子的更多相关文章
- 混沌数学之Henon吸引子
Henon吸引子是混沌与分形的著名例子. 相关软件:混沌数学及其软件模拟相关代码: // http://wenku.baidu.com/view/d51372a60029bd64783e2cc0.ht ...
- 混沌数学之Rössler(若斯叻)吸引子
若斯叻吸引子(Rössler attractor)是一组三元非线性微分方程: frac{dx(t)}{dt} = -y(t)-z(t) frac{dy(t)}{dt} = x(t)+a*y(t) fr ...
- 混沌数学之Chua's circuit(蔡氏电路)
蔡氏电路(英语:Chua's circuit),一种简单的非线性电子电路设计,它可以表现出标准的混沌理论行为.在1983年,由蔡少棠教授发表,当时他正在日本早稻田大学担任访问学者[1].这个电路的制作 ...
- 混沌数学之拉比诺维奇-法布里康特方程(Rabinovich-Fabrikant equations)
拉比诺维奇-法布里康特方程(Rabinovich-Fabrikant equations)是 1979年苏联物理学家拉比诺维奇和法布里康特提出模拟非平衡介 质自激波动的非线性常微分方程组: dot{x ...
- 基尼系数(Gini coefficient),洛伦茨系数
20世纪初意大利经济学家基尼,于1922年提出的定量测定收入分配差异程度的指标.它是根据洛伦茨曲线找出了判断分配平等程度的指标(如下图). 设实际收入分配曲线和收入分配绝对平等曲线之间的面积为A,实际 ...
- 混沌数学之Duffing(杜芬)振子
杜芬振子 Duffing oscillator是一个描写强迫振动的振动子,由非线性微分方程表示 杜芬方程列式如下: 其中 γ控制阻尼度 α控制韧度 β控制动力的非线性度 δ驱动力的振幅 ω驱动力的圆频 ...
- 混沌数学之logistic模型
logistic回归又称logistic回归分析,主要在流行病学中应用较多,比较常用的情形是探索某疾病的危险因素,根据危险因素预测某疾病发生的概率. 相关DEMO参见:混沌数学之离散点集图形DEMO ...
- 混沌数学之ASin模型
相关软件:混沌数学之离散点集图形DEMO 相关代码: class ASinEquation : public DiscreteEquation { public: ASinEquation() { m ...
- 混沌数学之Kent模型
相关软件:混沌数学之离散点集图形DEMO 相关代码: // http://wenku.baidu.com/view/7c6f4a000740be1e650e9a75.html // 肯特映射 clas ...
随机推荐
- Vue中directives的用法
关于 vue 中 directives 的用法问题,详细可以参考vue官方对directives的解释 当前文章主要讲述directives怎么用,directives做权限按钮的功能 ###1. d ...
- Scala入门2(特质与叠加在一起的特质)
一.介绍 参考http://luchunli.blog.51cto.com/2368057/1705025 我们知道,如果几个类有某些共通的方法或者字段,那么从它们多重继承时,就会出现麻烦.所以Jav ...
- OptParse选项工具模块
OptParse是一个从Python2.3版本起引入的一个编写命令行工具模块,示例如下 ######example.py###### import optparse if __name__ == &q ...
- 【SQL】178. Rank Scores
Write a SQL query to rank scores. If there is a tie between two scores, both should have the same ra ...
- [ 原创 ] Java基础6--构造函数和抽象类的性质
构造函数的性质 // A.方法名与类名相同: // B.没有返回类型(例如return.void等):// C.不能被static.final.native.abstract和synchronized ...
- CSS HTML 常用属性备忘录
学习软件设计有一年多了,明年五月就要毕业了.回头看看发现自己其实挺差劲的. 最近开通了博客所以就整理了一下笔记,在这里发布一下自己以前学习css时总是记不住去翻书又很常用的属性,都是一些很基础的. 大 ...
- bzoj 4408: [Fjoi 2016]神秘数 数学 可持久化线段树 主席树
https://www.lydsy.com/JudgeOnline/problem.php?id=4299 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1 ...
- ST-PUZZLE-2.0(一个益智游戏)
注:未经博主允许不得转载. 原文链接:http://www.cnblogs.com/Blog-of-Eden/p/9060300.html 和 https://i-m-eden.github.io/2 ...
- hdu 3338 最大流 ****
题意: 黑格子右上代表该行的和,左下代表该列下的和 链接:点我 这题可以用网络流做.以空白格为节点,假设流是从左流入,从上流出的,流入的容量为行和,流出来容量为列和,其余容量不变.求满足的最大流.由于 ...
- Python168的学习笔记7
关于多线程操作. 对于IO操作,如访问网站,写入磁盘这种需要时间等待响应的操作,多个cpu也几乎不能提高效率. 对于CPU密集型操作,如这个格式转换,可以通过多个cpu同时去进行. 但是对于pytho ...