混沌数学之Lorenz(洛伦茨)吸引子
洛伦茨吸引子是洛伦茨振子(Lorenz oscillator)的长期行为对应的分形结构,以爱德华·诺顿·洛伦茨的姓氏命名。
洛伦茨振子是能产生混沌流的三维动力系统,是一种吸引子,以其双纽线形状而著称。
映射展示出动力系统(三维系统的三个变量)的状态是如何以一种复杂且不重复的模式,随时间的推移而演变的。
当ρ(m_ParamB)值较小时,系统是稳定的,并能演变为两个定点吸引子中的一个;
当ρ(m_ParamB)大于24.28时,定点变成了排斥子,会以非常复杂的方式排斥轨迹,演变时自身从不交叉。
相关软件:混沌数学及其软件模拟
相关代码:
/*
http://zh.wikipedia.org/wiki/%E6%B4%9B%E4%BC%A6%E8%8C%A8%E5%90%B8%E5%BC%95%E5%AD%90
*/ class LorenzOscillator : public DifferentialEquation
{
public:
LorenzOscillator()
{
m_StartX = -10.0f;
m_StartY = 10.0f;
m_StartZ = 25.0f; m_ParamA = 10.0f;
m_ParamB = 28.0f;
m_ParamC = 8.0f/3.0f; m_StepT = 0.001f;
} void Derivative(float x, float y, float z, float& dX, float& dY, float& dZ)
{
dX = m_ParamA*(y - x);
dY = m_ParamB*x - y - x*z;
dZ = x*y - m_ParamC*z;
} bool IsValidParamA() const {return true;}
bool IsValidParamB() const {return true;}
bool IsValidParamC() const {return true;}
};
相关截图:





混沌数学之Lorenz(洛伦茨)吸引子的更多相关文章
- 混沌数学之Henon吸引子
Henon吸引子是混沌与分形的著名例子. 相关软件:混沌数学及其软件模拟相关代码: // http://wenku.baidu.com/view/d51372a60029bd64783e2cc0.ht ...
- 混沌数学之Rössler(若斯叻)吸引子
若斯叻吸引子(Rössler attractor)是一组三元非线性微分方程: frac{dx(t)}{dt} = -y(t)-z(t) frac{dy(t)}{dt} = x(t)+a*y(t) fr ...
- 混沌数学之Chua's circuit(蔡氏电路)
蔡氏电路(英语:Chua's circuit),一种简单的非线性电子电路设计,它可以表现出标准的混沌理论行为.在1983年,由蔡少棠教授发表,当时他正在日本早稻田大学担任访问学者[1].这个电路的制作 ...
- 混沌数学之拉比诺维奇-法布里康特方程(Rabinovich-Fabrikant equations)
拉比诺维奇-法布里康特方程(Rabinovich-Fabrikant equations)是 1979年苏联物理学家拉比诺维奇和法布里康特提出模拟非平衡介 质自激波动的非线性常微分方程组: dot{x ...
- 基尼系数(Gini coefficient),洛伦茨系数
20世纪初意大利经济学家基尼,于1922年提出的定量测定收入分配差异程度的指标.它是根据洛伦茨曲线找出了判断分配平等程度的指标(如下图). 设实际收入分配曲线和收入分配绝对平等曲线之间的面积为A,实际 ...
- 混沌数学之Duffing(杜芬)振子
杜芬振子 Duffing oscillator是一个描写强迫振动的振动子,由非线性微分方程表示 杜芬方程列式如下: 其中 γ控制阻尼度 α控制韧度 β控制动力的非线性度 δ驱动力的振幅 ω驱动力的圆频 ...
- 混沌数学之logistic模型
logistic回归又称logistic回归分析,主要在流行病学中应用较多,比较常用的情形是探索某疾病的危险因素,根据危险因素预测某疾病发生的概率. 相关DEMO参见:混沌数学之离散点集图形DEMO ...
- 混沌数学之ASin模型
相关软件:混沌数学之离散点集图形DEMO 相关代码: class ASinEquation : public DiscreteEquation { public: ASinEquation() { m ...
- 混沌数学之Kent模型
相关软件:混沌数学之离散点集图形DEMO 相关代码: // http://wenku.baidu.com/view/7c6f4a000740be1e650e9a75.html // 肯特映射 clas ...
随机推荐
- linux下根目录扩容
划分出一个磁盘,并将其格式化 [root@gg ~]# mkfs.ext3 /dev/sdb2 创建一个物理卷 [root@gg ~]# pvcreate /dev/sdb2 [roo ...
- vmstat详解
一.前言 很显然从名字中我们就可以知道vmstat是一个查看虚拟内存(Virtual Memory)使用状况的工具,但是怎样通过vmstat来发现系统中的瓶颈呢?在回答这个问题前,还是让我们回顾一下L ...
- 使用 AVA 做自动化测试
http://colabug.com/710736.html
- jupyter notebook 小技巧
Converting notebooks to other formats¶ !pip install https://github.com/ipython-contrib/jupyter_contr ...
- join和 Daemon守护线程
一.前言 一个程序至少有一个主线程,主线程启动子线程后,它们之间并没有隶属关系.主线程和子线程执行是并行的,相互独立.主线程执行完毕后默认不等子线程执行结束就接着往下走了,如果有其他程序就会运行另外的 ...
- [ 转载 ] Java基础12--基础学习总结——数组
java基础学习总结——数组 一.数组的基本概念 数组可以看成是多个相同类型数据组合,对这些数据的统一管理. 数组变量属引用类型,数组也可以看成是对象,数组中的每个元素相当于该对象的成员变量. 数组的 ...
- git merge和git rebase的区别(转)
Description git rebase 和 git merge 一样都是用于从一个分支获取并且合并到当前分支,但是他们采取不同的工作方式,以下面的一个工作场景说明其区别 场景: 如图所示: ...
- 希尔排序之C++实现(高级版)
希尔排序之C++实现(高级版) 一.源代码:ShellSortHigh.cpp /*希尔排序基本思想: 先取一个小于n的整数d1作为第一个增量,把文件的全部记录分组. 所有距离为d1的倍数的记录放在同 ...
- 安装第三方jar包的两种方式
由于部分第三放jar包没有放到maven中央仓库,而项目中又依赖了这些jar包,那么如何安装?我实践了两种,特做记录. 一.安装到 nexus 私有库: 在 3rd party 仓库下有个 Artif ...
- 【BZOJ-3123】森林 主席树 + 启发式合并
3123: [Sdoi2013]森林 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 2738 Solved: 806[Submit][Status] ...