P2303 [SDOi2012]Longge的问题
题目描述
Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题。现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N)。
输入输出格式
输入格式:
一个整数,为N。
输出格式:
一个整数,为所求的答案。
输入输出样例
6
15
说明
对于60%的数据,0<N<=2^16
对于100%的数据,0<N<=2^32
Solution:
本题数学。
设$f(x)$表示范围内$gcd(i,j)=x$的数的个数,则$f(x)=\sum_\limits{i=1}^{i\leq n}{(gcd(i,n)=x)}\;=\;\sum_\limits{i=1}^{i\leq \frac{n}{x}}{x*(gcd(i,\frac{n}{x})=1)}\;=\;x*\varphi (\frac{n}{x})$。
所以原式$=\sum_\limits{i|n}^{i\leq n}{i*\varphi (\frac{n}{i})}$。
于是直接暴力根号枚举n的因子,然后暴力根号筛$\varphi$ 求解就好了,时间复杂度$O(n^{\frac{3}{4}})$(注意开long long,被坑惨了)。
代码:
/*Code by 520 -- 9.20*/
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define RE register
#define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--)
using namespace std;
ll n;
ll ans; ll phi(ll x){
ll ans=x;
for(ll i=;i*i<=x;i++)
if(x%i==) {
while(x%i==) x/=i;
ans=ans/i*(i-);
}
if(x>) ans=ans/x*(x-);
return ans;
} int main(){
cin>>n;
ll i=;
for(i=;i*i<n;i++)
if(n%i==) ans+=i*phi(n/i)+(n/i)*phi(i);
if(i*i==n) ans+=i*phi(i);
cout<<ans;
return ;
}
P2303 [SDOi2012]Longge的问题的更多相关文章
- 洛谷 P2303 [SDOi2012]Longge的问题 解题报告
P2303 [SDOi2012]Longge的问题 题目背景 SDOi2012 题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数\(N\),你需要 ...
- 洛谷P2303 [SDOi2012]Longge的问题
题目背景 SDOi2012 题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). ...
- luogu P2303 [SDOi2012]Longge的问题
传送门 \[\sum_{i=1}^{n}\gcd(i,n)\] 考虑枚举所有可能的gcd,可以发现这一定是\(n\)的约数,当\(\gcd(i,n)=x\)时,\(gcd(\frac{i}{x},\f ...
- 洛谷P2303 [SDOi2012] Longge的问题 数论
看懂了题解,太妙了TT但是想解释的话可能要很多数学公式打起来太麻烦了TT所以我就先只放代码具体推演的过程我先写在纸上然后拍下来做成图片放上来算辣quq 好的那我先滚去做题了做完这题就把题解放上来.因为 ...
- 【洛谷题解】P2303 [SDOi2012]Longge的问题
题目传送门:链接. 能自己推出正确的式子的感觉真的很好! 题意简述: 求\(\sum_{i=1}^{n}gcd(i,n)\).\(n\leq 2^{32}\). 题解: 我们开始化简式子: \(\su ...
- P2303 [SDOI2012]Longge的问题 我傻QwQ
莫比乌斯反演学傻了$QwQ$ 思路:推式子? 提交:2次 错因:又双叒叕没开$long\space long$ 题解: $\sum_{i=1}^n gcd(i,n)$ $=\sum_{d|n}d\su ...
- BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2553 Solved: 1565[Submit][ ...
- BZOJ 2705: [SDOI2012]Longge的问题
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2554 Solved: 1566[Submit][ ...
- BZOJ 2705: [SDOI2012]Longge的问题 GCD
2705: [SDOI2012]Longge的问题 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnl ...
随机推荐
- 树莓派UPS-18650,添加时钟
1.简介 UPS-18650 是一个专门为树莓派(以下简称 pi)所设计的 UPS 电源,采用两颗标准 的 18650 锂电池进行供电,支持外部电源插入检测,支持边充边放,既插上外部电源时, pi 由 ...
- node.js主从分布式爬虫
前言 前文介绍过用Python写爬虫,但是当任务多的时候就比较慢, 这是由于Python自带的http库urllib2发起的http请求是阻塞式的,这意味着如果采用单线程模型,那么整个进程的大部分时间 ...
- GIT问题(二)——add报错
- Hyperledger Fabric 账本结构解析
前言 现在很多人都在从事区块链方面的研究,作者也一直在基于Hyperledger Fabric做一些开发工作.为了方便后来人更快的入门,本着“开源”的精神,在本文中向大家讲解一下Hyperledger ...
- Openstack逻辑架构
一. Keystone -身份认证管理 提供了认证和授权的服务,openstack不同的组件通信都要经过授权,确保正确的用户和服务是经过认证的.并且它集成了大量的认证机制,比如用户名/密码和令牌/基 ...
- 机器学习算法 --- SVM (Support Vector Machine)
一.SVM的简介 SVM(Support Vector Machine,中文名:支持向量机),是一种非常常用的机器学习分类算法,也是在传统机器学习(在以神经网络为主的深度学习出现以前)中一种非常牛X的 ...
- centos6.9 安装完xampp 7.2.0后,执行/opt/lampp/lampp报错
# /opt/lampp/lampp egrep: error while loading shared libraries: libc.so.6: cannot open shared object ...
- 【Py大法系列--01】20多行代码生成你的微信聊天机器人
前言 近期Stack Overflow公布了一项调查显示,Python已经成了发展最快的主流编程语言,Python搭乘着数据科学和机器学习以及人工智能的浪潮,席卷了整个技术圈.越来越多的人想了解.想学 ...
- 允许使用root远程ssh登录(Ubuntu 16.04)
今天装了ubuntu16和17,发现还是ubuntu16看着顺眼,所以以后决定用ubuntu16, 然后想换语言发现更新失败,所以想换成中国的源,但是vm里面复制粘贴不了,所以想用secureCRT连 ...
- tcp/ip客户端与服务器
单击“发送数据”把数据发送到指定IP地址的指定端口号 using System; using System.Collections.Generic; using System.ComponentMod ...