题面在这里!

考虑前后两个数 x,y,可以发现S只有在(x xor y)的最高有1位上的取值是要被确定的 (如果x==y那么没有限制),可以推一下什么情况下是1/0。

于是我们模拟一下这个操作,判一判限制有没有矛盾,如果没有矛盾答案就是 2^自由位

#include<bits/stdc++.h>
#define ll long long
using namespace std; int n,ban[67];
ll now,pre,Xor,c[67],ans=1; int main(){
scanf("%d",&n),fill(ban,ban+60,-1);
c[0]=1; for(int i=1;i<=60;i++) c[i]=c[i-1]+c[i-1]; for(int i=1;i<=n;pre=now,i++){
scanf("%lld",&now); if(!pre) continue; for(int j=59;j>=0;j--) if((now&c[j])^(pre&c[j])){
if(now&c[j]){
if(ban[j]==1){ puts("0"); return 0;}
ban[j]=0;
}
else{
if(ban[j]==0){ puts("0"); return 0;}
ban[j]=1;
}
break;
}
} for(int i=0;i<60;i++) if(ban[i]==-1) ans*=2ll; cout<<ans<<endl;
return 0;
}

  

hihocoder 1509 异或排序的更多相关文章

  1. hihoCoder.1509.异或排序(位运算 思路)

    题目链接 \(Description\) 给定长为\(n\)的序列\(A\).求有多少\(S\),满足\(0\leq S<2^{60}\),且对于所有\(i\in[1,n-1]\),\(a[i] ...

  2. hihocoder 1509异或排序

    描述 给定一个长度为 n 的非负整数序列 a[1..n] 你需要求有多少个非负整数 S 满足以下两个条件: (1).0 ≤ S < 2^60 (2).对于所有 1 ≤ i < n ,有 ( ...

  3. HihoCoder#1509 : 异或排序(二进制)

    题意 题目链接 Sol 挺简单的吧.考虑两个元素什么时候不满足条件 设\(a_i\)与\(a_i + 1\)最高的不同位分别为0 1,显然\(S\)的这一位必须为\(0\),否则这一位必须为\(1\) ...

  4. hihoCoder挑战赛28 题目1 : 异或排序

    题目1 : 异或排序 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 给定一个长度为 n 的非负整数序列 a[1..n] 你需要求有多少个非负整数 S 满足以下两个条件: ...

  5. 【HIHOCODER 1509 】 异或排序

    描述 给定一个长度为 n 的非负整数序列 a[1..n] 你需要求有多少个非负整数 S 满足以下两个条件: (1).0 ≤ S < 260 (2).对于所有 1 ≤ i < n ,有 (a ...

  6. 【hihoCoder挑战赛28 A】异或排序

    [题目链接]:http://hihocoder.com/problemset/problem/1509 [题意] [题解] 每次找到相邻两个数的二进制形式中; 不同的最高位; 显然S在这一位必然是确定 ...

  7. hihoCoder 1175:拓扑排序二

    题目链接: http://hihocoder.com/problemset/problem/1175 题目难度:一星级(简单题) 今天闲来无事,决定刷一道水题.结果发现这道水题居然把我卡了将近一个钟头 ...

  8. hihocoder 1174 [BFS /拓扑排序判断是否有环]

    hihocoder 1174 [算法]: 计算每一个点的入度值deg[i],这一步需要扫描所有点和边,复杂度O(N+M). 把入度为0的点加入队列Q中,当然有可能存在多个入度为0的点,同时它们之间也不 ...

  9. 题解报告:hihoCoder #1175:拓扑排序·二

    题目链接:https://hihocoder.com/problemset/problem/1175 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho所在学 ...

随机推荐

  1. JS设计模式——6.方法的链式调用

    什么是链式调用 这个很容易理解,例如: $(this).setStyle('color', 'red').show(); 分解链式调用 链式调用其实是两个部分: 1.操作对象(也就是被操作的DOM元素 ...

  2. C. Connect Three(构造)

    题目链接:http://codeforces.com/contest/1087/problem/C 题目大意:给你三个点的坐标,让你用尽可能少的方块,让这三个点连起来. 具体思路: 我们先对这三个点进 ...

  3. solr后台界面介绍——(十一)

    1.加一个collection的方法 复制solr-home下的collection1,修改名字为collection2.并且修改collection2文件夹中配置文件core.properties中 ...

  4. WIN下的CMD下载命令

    certutil -urlcache -split -f 远程地址 本地保存的文件跑径与文 件名 # 如里不写本地文 件名与路径名, 会自动跟远程文 件名相同, 并保存到当前目 录下 另一个是: bi ...

  5. 18 - csv文件-ini文件处理

    目录 1 CSV文件 1.1 手动生成一个csv文件 1.2 cvs模块 1.2.1 reader方法 1.2.2 writer方法 2 ini文件处理 2.1 configparser模块 2.2 ...

  6. 玩玩 Nginx 1----- Nginx + ngx_lua安装测试【CentOs下】

          最近打算搞搞nginx,扒着各位先驱的文章自己进行测试下,中间过程也是错误不断,记录一下,以备使用.       nginx的安装挺简单的,主要还是研究下一些第三方的模块,首先想试下初始化 ...

  7. RocketMQ使用

    RocketMQ是阿里巴巴在2012年开源的分布式消息中间件,目前已经捐赠给Apache基金会,并于2016年11月成为 Apache 孵化项目. 中间件是一类连接软件组件和应用的计算机软件,它包括一 ...

  8. python基础学习之路No.3 控制流if,while,for

    在学习编程语言的过程中,有一个很重要的东西,它就是判断,也可以称为控制流. 一般有if.while.for三种 ⭐if语句 if语句可以有一个通俗的解释,如果.假如 如果条件1满足,则…… 如果条件2 ...

  9. 关于django过滤器的使用

    最近项目中要做分类筛选,其实已经做了这个功能,但是有一个字段是MultiSelectField类型,包含多个值,用户提交的数据是单个值,无法查询出结果, 所以用到了自定义过滤 原代码 class In ...

  10. kafka基本版与kafka acl版性能对比(单机版)

    一.场景 线上已经有kafka集群,服务运行稳定.但是因为产品升级,需要对kakfa做安全测试,也就是权限验证. 但是增加权限验证,会不会对性能有影响呢?影响大吗?不知道呀! 因此,本文就此来做一下对 ...