BZOJ2227 [Zjoi2011]看电影(movie)
Description
\(k\)个座位,\(n\)个人依次过来,每人随机从\(k\)个座位中选择一个,并从它开始不停向后走直到遇到空座位坐下。求所有人都能坐下的概率(即没有人走到第\(k+1\)个位置)。\(n, k\leq200\),答案以有理数形式输出。
Solution
我们在最后一个座位之后添加第\(k+1\)个座位,并把这些座位连成环(\(k+1\)后面是第\(1\)个)。并令所有人可以从\(k+1\)个座位中任选一个。
那么现在每个座位坐到人的概率都相同(因为环是对称的),为\(\frac n{k+1}\)。答案实际上就是第\(k+1\)的座位没有人的概率,即\(\frac{k-n+1}{k+1}\)。但是这样是在所有人都可以选\(k+1\)的情况下的。而如果有人选了\(k+1\)就一定没有算到这个概率里,所以只需要乘上\(\left(\frac{k+1}k\right)^n\)即可。
所以答案即为
\]
有理数计算的话,质因数分解+高精即可。
Code
#include <algorithm>
#include <cstdio>
#include <cstring>
const int N = 205;
int p[N];
int A[10000], len;
void add(int n, int m) {
for (int i = 2; i <= n; ++i) if (!(n % i)) {
while (!(n % i)) {
p[i] += m;
n /= i;
}
}
}
void mul(int x) {
for (int i = 0, t = 0; i < len || t; ++i) {
t = (A[i] = A[i] * x + t) / 10;
A[i] %= 10;
if (i >= len) len = i + 1;
}
}
int main() {
int T;
scanf("%d", &T);
while (T--) {
int n, k;
scanf("%d%d", &n, &k);
if (n > k) { puts("0 1"); continue; }
memset(p, 0, sizeof p);
add(k - n + 1, 1);
add(k + 1, n - 1);
add(k, -n);
memset(A, 0, sizeof A);
A[0] = len = 1;
for (int i = 1; i <= k + 1; ++i)
for (int j = 0; j < p[i]; ++j)
mul(i);
while (len--) printf("%d", A[len]);
putchar(' ');
memset(A, 0, sizeof A);
A[0] = len = 1;
for (int i = 1; i <= k + 1; ++i)
for (int j = p[i]; j < 0; ++j)
mul(i);
while (len--) printf("%d", A[len]);
putchar('\n');
}
}
BZOJ2227 [Zjoi2011]看电影(movie)的更多相关文章
- 【BZOJ2227】[ZJOI2011]看电影(组合数学,高精度)
[BZOJ2227][ZJOI2011]看电影(组合数学,高精度) 题面 BZOJ 洛谷 题解 这题太神仙了. 首先\(K<N\)则必定无解,直接特判解决. 现在只考虑\(K\ge N\)的情况 ...
- [ZJOI2011]看电影(组合数学,高精度)
[ZJOI2011]看电影 这题模型转化很巧妙.(神仙题) 对于这种题首先肯定知道答案就是合法方案除以总方案. 总方案显然是\(k^n\). 那么考虑怎么算合法方案. 当\(n>k\)的时候显然 ...
- [ZJOI2011]看电影(MOVIE)
题目描述 到了难得的假期,小白班上组织大家去看电影.但由于假期里看电影的人太多,很难做到让全班看上同一场电影,最后大家在一个偏僻的小胡同里找到了一家电影院.但这家电影院分配座位的方式很特殊,具体方式如 ...
- Zjoi2011 看电影
最近在学习一些概率的东西.. 一个随机试验称为 Laplace 试验,当且仅当它满足如下两个条件: (ⅰ) 试验结果 (样本点) 的个数是有限的.(Ω 是有限集) (ⅱ) 任意两个基本事件的概率均相等 ...
- [ZJOI2011]看电影(组合数学/打表+高精)
Description 到了难得的假期,小白班上组织大家去看电影.但由于假期里看电影的人太多,很难做到让全班看上同一场电影,最后大家在一个偏僻的小胡同里找到了一家电影院.但这家电影院分配座位的方式很特 ...
- Zjoi2011看电影(movie)
第一步,打表找规律,发现自己的表连3的小样例都过不去,还不如自己手模,自己手跑了5以下的样例,然后发现毫无规律可言…… 第二步,想出一种错误做法,首先n>k必零,人比座都多……然后粘一下图: 基 ...
- 【BZOJ2227】【ZJOI2011】看电影 [组合数][质因数分解]
看电影 Time Limit: 10 Sec Memory Limit: 259 MB[Submit][Status][Discuss] Description 到了难得的假期,小白班上组织大家去看 ...
- HDU 3496 Watch The Movie(看电影)
HDU 3496 Watch The Movie(看电影) Time Limit: 1000MS Memory Limit: 65536K [Description] [题目描述] New sem ...
- 开始ubuntu 14.04 的装X模式---终端模式下中文输入,听歌,上irc 开启framebuffer看电影 截图
先上图吧 卡卡的全是在tty1 下的操作,看电影,听歌,截图 ,看图 ,上irc 等等,相当适合在小白面前装屁! 需要安装的软件: 为了能正常显示中文:安装fbterm sudo apt-get i ...
随机推荐
- tomcat JNDI Resource 配置
最近公司的项目慢慢开始向Maven项目迁移, 部分配置文件公共组也帮我们做了些改动,其中在spring的applicationContext.xml中看到了数据连接bean存在两个,一个是jndi 一 ...
- JVM概念总结:数据类型、堆与栈
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型.基本类型的变量保存原始值,即:他代表的值就是数值本身: 引用类型的变量保存引用值,引用值代表了某个对象的引用而不是对象的本身,对象的本身存放 ...
- jvm(1)类的加载(三)(线程上下文加载器)
简介: 类加载器从 JDK 1.0 就出现了,最初是为了满足 Java Applet 的需要而开发出来的. Java Applet 需要从远程下载 Java 类文件到浏览器中并执行. 现在类加载器在 ...
- vue的无缝滚动插件vue-seamless-scroll的安装与使用
npm安装地址 https://www.npmjs.com/package/vue-seamless-scroll 命令行执行: npm install vue-seamless-scroll --s ...
- python3模块: sys
一.简介 sys模块用于提供对python解释器的相关操作. 二.常用函数 sys.argv 命令行参数List,第一个元素是程序本身路径 sys.modules 返回系统导入的模块字段,key是模块 ...
- 一步一步教你使用 LSMW 批量处理数据
保存退出 输入完后,保存退出
- 设置User Agent
公司的前端要给项目的webview加一个区分,用来区别是iOS端访问.android访问还是在浏览器访问的,说是要加一个User Agent ,前端根据不同信息做适配,和我说来一头雾水,后来经过开发同 ...
- 【xsy1144】选物品 主席树
题目大意:$N$ 件物品摆成一排,给每个物品定义两个属性 $A$ 和$ B$,两件物品的 差异度 定义为它们两种属性的差的绝对值中较大的一个.如果要求出一些物品的差异度,我们先定义一个 理想物品,使它 ...
- 【BZOJ3625】【codeforces438E】小朋友和二叉树 生成函数+多项式求逆+多项式开根
首先,我们构造一个函数$G(x)$,若存在$k∈C$,则$[x^k]G(x)=1$. 不妨设$F(x)$为最终答案的生成函数,则$[x^n]F(x)$即为权值为$n$的神犇二叉树个数. 不难推导出,$ ...
- POJ 1146
#include <iostream> #include <algorithm> #define MAXN 55 using namespace std; char _m[MA ...