[BZOJ3451]normal 点分治,NTT
[BZOJ3451]normal 点分治,NTT
好久没更博了,咕咕咕。
BZOJ3451权限题,上darkbzoj交吧。
一句话题意,求随机点分治的期望复杂度。
考虑计算每个点对的贡献:如果一个点在点分树上是另一个点的祖先,那么这个点对另一个点的贡献就是1,这样的话,这个点就必须是这两个点之间的链上的点中在点分树上深度最浅的点,由于链上每个点成为点分树上最浅的点的概率都是相等的,所以这个点对对最终的期望的贡献就是\(\frac{1}{dis(i, j) + 1}\),这里的\(dis(i, j)\)习惯上认为是边的条数,\(+1\)就变成了点的个数。现在我们要求的就是\(\sum \limits _{i = 1} ^{n} \sum \limits _{j = 1} ^{n} \frac {1} {dis(i, j) + 1}\)。
考虑怎样在树上统计,明显需要点分治,每次统计从当前分治中心出发的所有长度的路径条数,跟先前统计过的子树合并一下就好了。观察合并的式子,设\(f[i]\)表示这次合并统计的长度为\(i\)的路径条数,\(p[i]\)表示以前统计过的子树中长度为\(i\)的路径条数,\(q[i]\)表示这次统计的长度为\(i\)的路径条数,显然有\(f[k] = \sum \limits _{i + j = k} p[i] * q[j]\),明显是一个卷积的形式,可以FFT,但是发现\(f\)数组的值肯定不会超过NTT模数,于是直接NTT。时间复杂度\(O(n (\log n) ^ 2)\)。
实现的时候要注意,每次从分支中心出发统计时,必须先把子树按深度或大小排一遍序,从小往大处理,不然一个扫把图就能把你卡成\(n ^ 2 \log n\),可以自己画图手玩。
#include <cstdio>
#include <cctype>
#include <vector>
#include <cstring>
#include <algorithm>
#define R register
#define I inline
#define D double
#define L long long
#define B 1000000
using namespace std;
const int N = 32777, P = 998244353, G = 3, H = 332748118;
char buf[B], *p1, *p2;
I char gc() { return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, B, stdin), p1 == p2) ? EOF : *p1++; }
I int rd() {
R int f = 0;
R char c = gc();
while (c < 48 || c > 57)
c = gc();
while (c > 47 && c < 58)
f = f * 10 + (c ^ 48), c = gc();
return f;
}
int s[N], t[N], v[N], p[N], q[N], a[N], b[N], d[N], c[N], h[N], u, r, S, e, F, M;
D o;
vector <int> g[N];
I int max(int x, int y) { return x > y ? x : y; }
I void swp(int &x, int &y) { x ^= y, y ^= x, x ^= y; }
I int cmp(int x, int y) { return t[x] < t[y]; }
void gsz(int x, int f) {
t[x] = 1;
for (R int i = 0, y; i < s[x]; ++i)
if (!v[y = g[x][i]] && y ^ f)
gsz(y, x), t[x] += t[y];
}
void grt(int x, int f, int a) {
R int m = 0, i, y;
for (i = 0; i < s[x]; ++i)
if (!v[y = g[x][i]] && y ^ f)
m = max(m, t[y]), grt(y, x, a);
m = max(m, a - t[x]);
if (m < u)
u = m, r = x;
}
void dfs(int x, int f, int d) {
c[++e] = d;
for (R int i = 0, y; i < s[x]; ++i)
if (!v[y = g[x][i]] && y ^ f)
dfs(y, x, d + 1);
}
I L pwr(L a, L b) {
L r = 1;
for (; b; b >>= 1, a = a * a % P)
if (b & 1)
r = r * a % P;
return r;
}
void ntt(int *f, int v) {
R int i, j, k, t;
L p, q, o;
for (i = 0; i < M; ++i)
if (i < d[i])
swp(f[i], f[d[i]]);
for (i = 1; i < M; i <<= 1) {
t = i << 1, p = pwr(v ? G : H, (P - 1) / t);
for (j = 0; j < M; j += t)
for (q = 1, k = 0; k < i; ++k)
o = q * f[i + j + k] % P, f[i + j + k] = (f[j + k] - o + P) % P, f[j + k] = (f[j + k] + o + P) % P, q = q * p % P;
}
}
void dac(int x) {
R int i, j, y, z;
p[0] = 1, h[0] = 0, u = S, gsz(x, 0), grt(x, 0, t[x]), v[r] = 1, sort(&g[r][0], s[r] + &g[r][0], cmp);
for (i = 0; i < s[r]; ++i)
if (!v[y = g[r][i]]) {
for (M = 1; M <= t[x]; M <<= 1) {}
e = 0, dfs(y, r, 1), F = pwr(M, P - 2), d[0] = 0;
for (z = M >> 1, j = 0; j < M; ++j)
d[j] = (d[j >> 1] >> 1)|((j & 1) ? z : 0);
for (j = 1; j <= e; ++j)
++q[c[j]], h[++h[0]] = c[j];
memcpy(a, p, M * 4), memcpy(b, q, M * 4);
ntt(a, 1), ntt(b, 1);
for (j = 0; j < M; ++j)
a[j] = 1ll * a[j] * b[j] % P;
ntt(a, 0);
for (j = 0; j < M; ++j)
p[j] += q[j], a[j] = 1ll * a[j] * F * 2 % P, o += (D)a[j] / (j + 1);
for (j = 1; j <= e; ++j)
q[c[j]] = 0;
}
for (i = 1; i <= h[0]; ++i)
p[h[i]] = 0;
for (x = r, i = 0; i < s[x]; ++i)
if(!v[y = g[x][i]])
dac(y);
}
int main() {
R int n = rd(), i, x, y;
for (S = 1; S <= n; S <<= 1) {}
for (i = 1; i < n; ++i)
x = rd() + 1, y = rd() + 1, g[x].push_back(y), g[y].push_back(x);
for (i = 1; i <= n; ++i)
s[i] = g[i].size();
o = n, dac(1), printf("%.4lf", o);
return 0;
}
码风也变了。。。
[BZOJ3451]normal 点分治,NTT的更多相关文章
- [BZOJ3451]Normal(点分治+FFT)
[BZOJ3451]Normal(点分治+FFT) 题面 给你一棵 n个点的树,对这棵树进行随机点分治,每次随机一个点作为分治中心.定义消耗时间为每层分治的子树大小之和,求消耗时间的期望. 分析 根据 ...
- #565. 「LibreOJ Round #10」mathematican 的二进制(期望 + 分治NTT)
题面 戳这里,题意简单易懂. 题解 首先我们发现,操作是可以不考虑顺序的,因为每次操作会加一个 \(1\) ,每次进位会减少一个 \(1\) ,我们就可以考虑最后 \(1\) 的个数(也就是最后的和) ...
- LOJ2541 PKUWC2018猎人杀(概率期望+容斥原理+生成函数+分治NTT)
考虑容斥,枚举一个子集S在1号猎人之后死.显然这个概率是w1/(Σwi+w1) (i∈S).于是我们统计出各种子集和的系数即可,造出一堆形如(-xwi+1)的生成函数,分治NTT卷起来就可以了. #i ...
- 【BZOJ-3456】城市规划 CDQ分治 + NTT
题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=3456 Solution 这个问题可以考虑dp,利用补集思想 N个点的简单图总数量为$2^{ ...
- CF960G Bandit Blues 【第一类斯特林数 + 分治NTT】
题目链接 CF960G 题解 同FJOI2016只不过数据范围变大了 考虑如何预处理第一类斯特林数 性质 \[x^{\overline{n}} = \sum\limits_{i = 0}^{n}\be ...
- 洛谷5月月赛T30212 玩游戏 【分治NTT + 多项式求ln】
题目链接 洛谷T30212 题解 式子很容易推出来,二项式定理展开后对于\(k\)的答案即可化简为如下: \[k!(\sum\limits_{i = 0}^{k} \frac{\sum\limits_ ...
- loj2541 「PKUWC2018」猎人杀 【容斥 + 分治NTT】
题目链接 loj2541 题解 思路很妙啊, 人傻想不到啊 觉得十分难求,考虑容斥 由于\(1\)号可能不是最后一个被杀的,我们容斥一下\(1\)号之后至少有几个没被杀 我们令\(A = \sum\l ...
- hdu5279 YJC plays Minecraft 【分治NTT】
题目链接 hdu5279 题解 给出若干个完全图,然后完全图之间首尾相连并成环,要求删边使得两点之间路径数不超过\(1\),求方案数 容易想到各个完全图是独立的,每个完全图要删成一个森林,其实就是询问 ...
- CF960G Bandit Blues 分治+NTT(第一类斯特林数)
$ \color{#0066ff}{ 题目描述 }$ 给你三个正整数 \(n\),\(a\),\(b\),定义 \(A\) 为一个排列中是前缀最大值的数的个数,定义 \(B\) 为一个排列中是后缀最大 ...
随机推荐
- Fuckey V1.0 Beta版发布!!!
Fuckey,以前叫FullNexus4,只因为当时想做一个软件给自己的Nexus 4,方便方便一下,不过这名字感觉太局限了,毕竟很多朋友不是使用的Nexus 4的手机,但却还是使用了FullNexu ...
- 使用GTID给Galera集群做数据库异步复制
一.为什么要做Galera集群异步复制 Galera集群解决了数据库高可用的问题,但是存在局限性,例如耗时的事务处理可能会导致集群性能急剧下降,甚至出现阻塞现象.而不幸的是,类似报表等业务需求就需要做 ...
- iOS设计模式 - 生成器
iOS设计模式 - 生成器 原理图 说明 1. 将构建复杂对象的过程拆分成一个一个的模块,通过统一的指导者来指导对象的构建过程称之为生成器模式 2. 生成器模式适合用于构建组合的对象 源码 https ...
- 利用Linode面板Clone克隆搬家迁移不同VPS数据及利用IP Swap迁移IP地址
在众多海外VPS服务商中,老蒋个人认为Linode提供的VPS方案和性价比还是比较高的,尤其目前基础1GB方案仅需10美元每月且全部是SSD固态硬盘,无论是流量还是硬盘大小,基本上可以满足我们大部分用 ...
- zabbix的日常监控-分布式监控(十)
参考博文:http://blog.51cto.com/jinlong/2051966 zabbix proxy 可以代替 zabbix server 检索客户端的数据,然后把数据汇报给 zabbix ...
- Spring 源码阅读之BeanFactory
1. BeanFactory 的结构体系如下: 2. XmlBeanFactory ,装载Spring配置信息 package org.springframework.beans.factory.xm ...
- HBase性能优化 Java Api
1. 使用“连接池” 如果每次和Hbase交互时都去新建连接的话,显然是低效率的,HBase也提供类连接池相关的API. 1.1. HTablePool 早期的API中使用它,但很不幸,现在它已经过时 ...
- 【转】JS实现继承的几种方式
既然要实现继承,那么首先我们得有一个父类,代码如下: // 定义一个动物类 function Animal (name) { // 属性 this.name = name || 'Animal'; / ...
- TensorFlow安装-Windows
参考:https://blog.csdn.net/dou3516/article/details/77836459 一.安装环境 TensorFlow即可以支持CPU,也可以支持CPU+GPU.前者的 ...
- P2467 [SDOI2010]地精部落
题目描述 传说很久以前,大地上居住着一种神秘的生物:地精. 地精喜欢住在连绵不绝的山脉中.具体地说,一座长度为N的山脉H可分为从左到右的N段,每段有一个独一无二的高度Hi,其中Hi是1到N之间的正整数 ...