poj1330Nearest Common Ancestors(LCA小结)
题目大意:意如其名。
题目分析:本题只有一个查询,所以可以各种乱搞过去。
不过对于菜鸟而言,还是老老实实练习一下LCA算法。
LCA有很多经典的算法。按工作方式分在线和离线2种。
tarjan算法是经典的离线算法。这篇博客讲的太好懂了,我也不好意思班门弄斧,具体戳进去看看就会明白。重点是那个插图,一看秒懂。
在线算法主要有倍增算法和转RMQ算法。
另外LCA还有2种更为高效的O(n)-O(1)算法。一种请戳这里,另一种其实就是先将LCA转化成RMQ,再利用笛卡尔树O(n)预处理,O(1)回答,具体可以戳这里。
后两种O(n)算法还没有仔细研究,大致看了下,不是很明白,但是感觉很厉害的样子。mark一下,以后抽时间学习一下。
下面给出本题的前3种算法具体实现:
1:tarjan算法(虽然对本题来说有点奢侈了。。)
#include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 10005;
struct node
{
int to,next;
}e[N];
int head[N],set[N],fa[N],in[N];
bool vis[N];
int n,num,p,q;
void build(int s,int ed)
{
e[num].to = ed;
e[num].next = head[s];
head[s] = num ++;
}
void init()
{
num = 0;
memset(head,-1,sizeof(head));
memset(in,0,sizeof(in));
}
int find(int x)
{
int rt = x;
while(set[rt] != rt)
rt = set[rt];
int pa = set[x];
while(pa != rt)
{
set[x] = rt;
x = pa;
pa = set[x];
}
return rt;
}
void bing(int a,int b)
{
int ra = find(a);
int rb = find(b);
if(ra != rb)
set[rb] = ra;
}
void dfs(int cur)
{
fa[cur] = cur;
set[cur] = cur;
int i;
for(i = head[cur];i != -1;i = e[i].next)
{
dfs(e[i].to);
bing(cur,e[i].to);
fa[find(cur)] = cur;
}
vis[cur] = true;
if((p == cur && vis[q]))
printf("%d\n",fa[find(q)]);
if((q == cur && vis[p]))
printf("%d\n",fa[find(p)]);
}
void tarjan()
{
int i;
memset(vis,false,sizeof(vis));
for(i = 1;i <= n;i ++)
if(in[i] == 0)
break;
dfs(i);
}
int main()
{
int t;
int i,a,b;
scanf("%d",&t);
while(t --)
{
scanf("%d",&n);
init();
for(i = 1;i < n;i ++)
{
scanf("%d%d",&a,&b);
build(a,b);
in[b] ++;
}
scanf("%d%d",&p,&q);
tarjan();
}
return 0;
}
2:LCA转RMQ,再st算法:
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N = 20005; int dep[N],pos[N],seq[N],first[N],in[N];
int dp[N][20];
struct node
{
int to,next;
}e[N];
int head[N];
int n,num,p,q,id;
void build(int s,int ed)
{
e[num].to = ed;
e[num].next = head[s];
head[s] = num ++;
} void dfs(int cur,int deep)
{
dep[cur] = deep;
first[cur] = id;
pos[id] = cur;
seq[id ++] = dep[cur];
int i;
for(i = head[cur];i != -1;i = e[i].next)
{
dfs(e[i].to,deep + 1);
pos[id] = cur;
seq[id ++] = dep[cur];
}
}
int rmq()
{
int i,j;
for(i = 1;i <= id;i ++)
dp[i][0] = i;
for(j = 1;(1<<j) <= id;j ++)
{
for(i = 1;(i + (1<<(j - 1))) <= id;i ++)
if(seq[dp[i][j - 1]] < seq[dp[i + (1<<(j - 1))][j - 1]])
dp[i][j] = dp[i][j - 1];
else
dp[i][j] = dp[i + (1<<(j - 1))][j - 1];
}
int tp = first[p];
int tq = first[q];
if(tp > tq)
swap(tp,tq);
int k = floor(log((double)(tq - tp + 1))/log(2.0));
int tmp;
if(seq[dp[tp][k]] < seq[dp[tq - (1<<k) + 1][k]])
tmp = dp[tp][k];
else
tmp = dp[tq - (1<<k) + 1][k];
return pos[tmp];
}
void solve()
{
int i;
id = 1;
for(i = 1;i <= n;i ++)
if(in[i] == 0)
break;
dfs(i,0);
id --;
printf("%d\n",rmq());
}
int main()
{
int i,a,b,t;
freopen("in.txt","r",stdin);
scanf("%d",&t);
while(t --)
{
scanf("%d",&n);
num = 0;
memset(head,-1,sizeof(head));
memset(in,0,sizeof(in));
for(i = 1;i < n;i ++)
{
scanf("%d%d",&a,&b);
build(a,b);
in[b] ++;
}
scanf("%d%d",&p,&q);
solve();
}
return 0;
}
3:倍增算法:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 10005; int dp[N][20],deep[N];
struct node
{
int to,next;
}e[N];
int n,num,p,q;
int head[N],in[N];
void build(int s,int ed)
{
e[num].to = ed;
e[num].next = head[s];
head[s] = num ++;
}
void dfs(int cur,int fa)
{
deep[cur] = deep[fa] + 1;
dp[cur][0] = fa;
int i;
for(i = 1;i < 18;i ++)
dp[cur][i] = dp[dp[cur][i - 1]][i - 1];
for(i = head[cur];i != -1;i = e[i].next)
{
dfs(e[i].to,cur);
}
}
int lca()
{
if(deep[p] < deep[q])
swap(p,q);
int i,j;
for(j = deep[p] - deep[q],i = 0;j;j >>= 1,i ++)
{
if(j&1)
p = dp[p][i];
}
if(p == q)
return q;
for(i = 18;i >= 0;i --)
{
if(dp[p][i] != dp[q][i])
{
p = dp[p][i];
q = dp[q][i];
}
}
return dp[q][0];
}
void solve()
{
int i;
memset(deep,0,sizeof(deep));
for(i = 1;i <= n;i ++)
if(in[i] == 0)
break;
dfs(i,0);
printf("%d\n",lca());
}
int main()
{
int t,i,a,b;
freopen("in.txt","r",stdin);
scanf("%d",&t);
while(t --)
{
scanf("%d",&n);
num = 0;
memset(head,-1,sizeof(head));
memset(in,0,sizeof(in));
for(i = 1;i < n;i ++)
{
scanf("%d%d",&a,&b);
build(a,b);
in[b] ++;
}
scanf("%d%d",&p,&q);
solve();
}
return 0;
}
poj1330Nearest Common Ancestors(LCA小结)的更多相关文章
- POJ.1330 Nearest Common Ancestors (LCA 倍增)
POJ.1330 Nearest Common Ancestors (LCA 倍增) 题意分析 给出一棵树,树上有n个点(n-1)条边,n-1个父子的边的关系a-b.接下来给出xy,求出xy的lca节 ...
- poj 1330 Nearest Common Ancestors LCA
题目链接:http://poj.org/problem?id=1330 A rooted tree is a well-known data structure in computer science ...
- POJ 1330 Nearest Common Ancestors LCA题解
Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 19728 Accept ...
- pku 1330 Nearest Common Ancestors LCA离线
pku 1330 Nearest Common Ancestors 题目链接: http://poj.org/problem?id=1330 题目大意: 给定一棵树的边关系,注意是有向边,因为这个WA ...
- poj 1330 Nearest Common Ancestors lca 在线rmq
Nearest Common Ancestors Description A rooted tree is a well-known data structure in computer scienc ...
- Nearest Common Ancestors(LCA)
Description A rooted tree is a well-known data structure in computer science and engineering. An exa ...
- poj1330Nearest Common Ancestors 1470 Closest Common Ancestors(LCA算法)
LCA思想:http://www.cnblogs.com/hujunzheng/p/3945885.html 在求解最近公共祖先为问题上,用到的是Tarjan的思想,从根结点开始形成一棵深搜树,非常好 ...
- poj----1330Nearest Common Ancestors(简单LCA)
题目连接 http://poj.org/problem?id=1330 就是构建一棵树,然后问你两个节点之间最近的公共父节点是谁? 代码: /*Source Code Problem: 1330 U ...
- POJ-1330--Nearest Common Ancestors(离线LCA)
LCA离线算法 它需要一次输入所有的询问,然后有根节点开始进行深度优先遍历(DFS),在深度优先遍历的过程中,进行并查集的操作,同时查询询问,返回结果. 题意: 求A ,B两点的最近公共祖先 分析: ...
随机推荐
- [华为机试练习题]55.最大公约数 & 多个数的最大公约数
题目 描写叙述: 输入2个数字,最后输出2个数字的最大公约数 题目类别: 位运算 难度: 0基础 执行时间限制: 无限制 内存限制: 无限制 阶段: 入职前练习 输入: 2个整数 输出: 输出数字1和 ...
- const与define的异同
1. DEFINE是预处理指令,是简单的文字替换:而const是关键字,用于变量声明的修饰. 2. DEFINE替换的结果可以是数值.表达式.字符串.甚至是一个程序:而const只能限定变量为不可修改 ...
- Android的TextView使用Html来处理图片显示、字体样式、超链接等
一.[Android实例]实现TextView里的文字有不同颜色 转eoe:http://www.eoeandroid.com/thread-4496-1-1.html import android. ...
- JavaScript 函数方法 - toString()
Function.prototype.toString() 返回函数代码的字符串形式. 描述 Function 对象覆盖了从 Object 继承来的 Object.prototype.toString ...
- roleManager 元素(ASP.NET 设置架构),我是因为SSL弱密码(转)
为角色管理配置应用程序. 此元素是 .NET Framework 2.0 版中的新元素. configuration 元素(常规设置架构) system.web 元素(ASP.NET 设置架构) ...
- 使用CMD连接SQL Server
在CMD中操作数据库,界面不美观,而且排版不整齐,但在机器上没有安装SQLSERVER的时候,也是极其方便的. 在命令行中输入 OSQL ?可以获得所有帮助信息 osql -S 数据库服务 ...
- 原创:2016.4.25-2016.5.1 C# informal essay and tittle_tattle
1.Some tips of the Time in C sharp (1) How to define the category of the "Datetime"? date ...
- C语言结构体的字节对齐
Test Code: #include <iostream> #include <cstring> using namespace std; struct A{ int a; ...
- n!mod p的求法
我们假设p为素数,n!=a*pe,则我们需要求解a mod p和e. e是n!能够迭代整除p的次数,因此可以使用下面式子计算: n/p+n/p2+n/p3…… 我们只需要对pt≤n的t进行计算所以复杂 ...
- 总结配置搭建tomcat时碰到的一些小问题
1.环境变量的配置 在配置tomcat的环境变量时始终配置不对,于是首先检查之前java的环境变量是否正确,发现java命令可以用但是javac却找不到,自己又瞎搞一通,终于javac可以用了,但ja ...