什么是标注?

在自然语言处理中有一个常见的任务,即标注。常见的有:1)词性标注(Part-Of-Speech Tagging),将句子中的每一个词标注词性,比如名词、动词等;2)实体标注(Name Entity Tagging),将句子中的特殊词标注,比如地址、日期、人物姓名等。

下图所看到的的是词性标注的案例,当输入一个句子时,计算机自己主动标注出每一个词的词性。



下图所看到的的是实体标注的案例,当输入一个句子时,计算机自己主动标注出特殊词的实体类别。


粗略看来。这并非一个简单问题。首先每一个词都可能有多个含义,不同情况表达不同含义。其次,一个词的含义或者词性也受到前后多个词的影响。

标注问题的数学表达

在找到解决方式之前,我们最好先用数学的语言来描写叙述一下这个问题。

当我们得到一个句子时,我们能够把它看做一个向量。令句子s有共计n个单词,第i个单词用xi来表示,显然s = x1, x2, ... xn。因此问题能够描写叙述成。对于每一个单词xi,我们须要分别给定一个标注yi,因而获得句子的标注y = y1, y2, ... yn。


综上所述,训练模型时我们期望对于不论什么一个句子s,我们须要得到全部可能出现的标注的概率p(y | s),当中概率最大的y即是我们须要的结果。终于的表达式为tagging(s)= arg max(p(y|s))。


接下来。我们须要考虑怎样建立训练集并从中学习出上述的模型。首先,我须要获得一个已经标注好的语料库。语料库中有若干句子。每一个句子中的每一个词都已有标识。

然后,对于语料库中出现的全部的句子s与相应的标识y,我们能够学习出条件概率p(y, s)。即某个句子与其相应标识的出现概率。其次,因为语料库无法包括全部可能出现的句子,所以我们希望能够得到一个更加宽泛的表达式,通过贝叶斯公式,我们能够很看出p(y,
s) = p(y) * p(s | y),同一时候p(y | s) = p(y) * p(s | y) / p(s);我们须要比較的是p(y | s)中的最大值而无需获得p(y | s)。因此显然p(s)的详细取值并不重要。因此我们仅仅须要考虑tagging(s)=
arg max(p(y) * p(s | y))。


因为语料库无法保存全部客观存在的句子。我们必须找到一种方法来预计p(y)与p(s | y)的取值,而当中一种很有名的方法就是隐马尔科夫模型。

隐马尔科夫模型

我们依旧回到上述问题,给定一个句子s = x1, x2, ... xn,我们给出一个标识组合y = y1, y2, ... yn,使得y = arg max(p(y)
* p(s | y)) = arg max(p(x1,
x2, ... , xn, y1, y2, ..., yn))。


依据上一章《语言模型》所提到的。我们依旧对每一个句子做一点优化:

1)添加一个開始符号”*“。我们定义全部句子都是以”*“開始。即X-1 = X0 = *;
2)添加一个结束符号”STOP“,我们定义全部句子都是以”STOP“结束。


同一时候,隐马尔科夫模型须要我们做一些额外的如果来简化模型:
1)yk仅仅与前几个元素相关,即标识的语义相关性仅仅影响前后几个元素;
2)单词xk与相应的yk不受其它单词的影响,即p(xi | yi)相互独立.

经过简化以后。我们以三阶隐马尔科夫模型为例,表达式为 p(y1, y2, … yn |

x1, x2, … xn) =
p(y1, y2, … yn) * p(x1, x2, … xn | y1, y2, … yn) = ∏q(yj | yj-2, yj-1) * ∏ e(xi | yi)。显然,简化后的模型,单个单词在语料库中出现的频率会远远高于句子总体出现的频率。


參数估算

有了隐马尔科夫模型之后。我们须要做的就仅仅是估算參数q(yj
| yj-2, yj-1)与e(xi | yi)。q(yj
| yj-2, yj-1)在上一章《语言模型》中有具体的解释,而e(xi
| yi)通过统计每一个单词在语料库中的出现情况能够轻松获得。然而有一种特殊情况,某些单词假设在语料库中没有出现,那么e(xi | yi) = 0将导致总体句子的出现概率为0。为了解决问题,我们能够採用一个简单的解决方式:

1)首先将语料库中全部的单词分为频繁词与非频繁词(通过一个阈值来确定);
2)频繁词的e(xi
| yi)将直接从语料库中统计得出。
3)非频繁词的通过预定的规则划分到多个群组中。通过统计群组的词频来确定e(xi
| yi)。

比如,常见的分组方法例如以下图所看到的。这样的方式对于日期、姓名、缩写等特殊词的效果非常好。


算法的复杂度

如果我们已经训练得到q(yj | yj-2, yj-1)与e(xi
| yi),给定一个句子s = x1, x2, ... xn,我们应当怎样得到标注y
= y1, y2, ... yn。

方法1:
暴力方法。遍历全部可能出现的y1, y2, ... yn组合,计算概率并找出概率最大的值。显然,暴力方法的时间复杂度不会令人惬意。
方法2:动态规划,定义一个动态规划表达式m(k,
u, v),k表示句子的第k位,u,v表示前k为组成的子句的最后两个单词的标识。因此。递归方程能够表述为m(k, u, v) = max(m(k-1, w, u) * q(v | w, u) * e( x | v))。关于动态规划方法,leetcode里有不少案例能够说明。

NLP | 自然语言处理 - 标注问题与隐马尔科夫模型(Tagging Problems, and Hidden Markov Models)的更多相关文章

  1. 机器学习中的隐马尔科夫模型(HMM)详解

    机器学习中的隐马尔科夫模型(HMM)详解 在之前介绍贝叶斯网络的博文中,我们已经讨论过概率图模型(PGM)的概念了.Russell等在文献[1]中指出:"在统计学中,图模型这个术语指包含贝叶 ...

  2. 自然语言处理(1)-HMM隐马尔科夫模型基础概念(一)

    隐马尔科夫模型HMM 序言 文本序列标注是自然语言处理中非常重要的一环,我先接触到的是CRF(条件随机场模型)用于解决相关问题,因此希望能够对CRF有一个全面的理解,但是由于在学习过程中发现一个算法像 ...

  3. 自然语言处理---用隐马尔科夫模型(HMM)实现词性标注---1998年1月份人民日报语料---learn---test---evaluation---Demo---java实现

    先放上一张Demo的测试图 测试的句子及每个分词的词性标注为:   目前/t 这/rzv 条/q 高速公路/n 之间/f 的/ude1 路段/n 已/d 紧急/a 封闭/v ./w 需要基础知识 HM ...

  4. HMM隐马尔科夫模型

    这是一个非常重要的模型,凡是学统计学.机器学习.数据挖掘的人都应该彻底搞懂. python包: hmmlearn 0.2.0 https://github.com/hmmlearn/hmmlearn ...

  5. 猪猪的机器学习笔记(十七)隐马尔科夫模型HMM

    隐马尔科夫模型HMM 作者:樱花猪 摘要: 本文为七月算法(julyedu.com)12月机器学习第十七次课在线笔记.隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来 ...

  6. 机器学习之隐马尔科夫模型HMM(六)

    摘要 隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来描述一个含有隐含未知参数的马尔科夫过程.其难点是从可观察的参数中确定该过程的隐含参数,然后利用这些参数来作进一步 ...

  7. 隐马尔科夫模型(HMM)与词性标注问题

    一.马尔科夫过程: 在已知目前状态(现在)的条件下,它未来的演变(将来)不依赖于它以往的演变 (过去 ).例如森林中动物头数的变化构成——马尔可夫过程.在现实世界中,有很多过程都是马尔可夫过程,如液体 ...

  8. 隐马尔科夫模型HMM

    崔晓源 翻译 我们通常都习惯寻找一个事物在一段时间里的变化规律.在很多领域我们都希望找到这个规律,比如计算机中的指令顺序,句子中的词顺序和语音中的词顺序等等.一个最适用的例子就是天气的预测. 首先,本 ...

  9. 隐马尔科夫模型 HMM(Hidden Markov Model)

    本科阶段学了三四遍的HMM,机器学习课,自然语言处理课,中文信息处理课:如今学研究生的自然语言处理,又碰见了这个老熟人: 虽多次碰到,但总觉得一知半解,对其了解不够全面,借着这次的机会,我想要直接搞定 ...

随机推荐

  1. PHP - 继承 - 子类使用父类方法

    <?php class ShopProduct { private $FirstName; private $LastName; private $Title; private $Price; ...

  2. 配置SecureCRT连接Linux CentOS

    链接地址:http://f.dataguru.cn/thread-144513-1-1.html 环境:Linux:centos5.8虚拟机:VirtualBox本机:windows至于怎么安装Cen ...

  3. CentOS6.5实现rsync+inotify实时同步

    参考博文: 参考1:CentOS6.5实现rsync+inotify实时同步 参考2:inotify-tools+rsync实时同步文件安装和配置 CentOS 6.3下rsync服务器的安装与配置  ...

  4. iOS: 在键盘之上显示一个 View

    如 AlertView,当 show 一个 Alert 时,它会覆盖在 Keyboard 上面,不影响显示的效果.那么我们自己创建的 View 如何像 Alert 那样不被键盘盖住呢?很简单,拿到 A ...

  5. 转:Linus:利用二级指针删除单向链表

    感谢网友full_of_bull投递此文(注:此文最初发表在这个这里,我对原文后半段修改了许多,并加入了插图) Linus大婶在slashdot上回答一些编程爱好者的提问,其中一个人问他什么样的代码是 ...

  6. 变相的取消Datagridview控件的选中状态

    思路:把每一列的文字颜色设为黑色,选中时候的背景为白色,颜色为黑色.每一列都这样设置,那么变相的达到了取消选中效果. 图:

  7. iOS 7 - Auto Layout on iOS Versions prior to 6.0

    链接地址:http://stackoverflow.com/questions/18735847/ios-7-auto-layout-on-ios-versions-prior-to-6-0 Stac ...

  8. saltstack:使用教程之二高级模块用法Grains、Pillar

    1.grains用法: 在客户端服务启动的时候收集客户的基础信息,在配置发生变化后也可以通过master重新同步 显示一个客户端的所有项目: [root@node5 ~]# salt "no ...

  9. NGINX服务器打开目录浏览功能

    我们做文件服务器的时候,希望打开目录浏览的功能.但是Nginx默认是不允许列出目录功能的.若需要此功能,需要在配置文件中手动开启. 首先需要打开开关.autoindex on;autoindex_ex ...

  10. Git 文件状态的转换

    很好低使用git 文件的状态转换的了解是非常重要的. 文件转换状态其实可以分为四种: untracked:未跟踪,此文件在工作区中,但并没有加入git库,不参与版本控制. 通过”git add”,”g ...